
Isogeny-based key agreement

Optimizations, secure implementation, and applications

Fabio Campos

Email: campos@sopmac.de
Website: https://www.sopmac.org/

Version: December 19, 2023

Printed by https://www.proefschriften.nl/

Cover design: Lua Maria Campos
The cover shows the rapid-mixing property of life exemplified by the
wonderful city of Rio de Janeiro, a purgatory of beauty and chaos.

“É muito fácil falar de coisas tão belas
De frente pro mar, mas de costas pra favela.” – Marcelo D2 and B Negão

Public domain

https://www.sopmac.org/
https://www.proefschriften.nl/

Isogeny-based key agreement
Optimizations, secure implementation, and applications

Proefschrift ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

vrijdag 22 september 2023
om 12.30 uur precies

door

Fabio Felipe Campos
geboren op 16 februari 1975
te Rio de Janeiro, Brazilië

Promotoren:

Prof. dr. Peter Schwabe

Prof. dr. Steffen Reith
Hochschule RheinMain, Duitsland

Manuscriptcommissie:

Prof. dr. Lejla Batina (voorzitter)

Dr. Diego F. Aranha
Aarhus Universitet, Denemarken

Prof. dr. ing. Tim Güneysu
Ruhr-Universität Bochum, Duitsland

Dr. Chloe Martindale
University of Bristol, Verenigd Koninkrijk

Prof. dr. Jörn Steuding
Julius-Maximilians-Universität Würzburg, Duitsland

Acknowledgements

If I were to thank everyone who has helped me along this way, the list
would be almost endless. For this reason, I apologize to those who are not
mentioned on this list.

First of all, thanks to my supervisors Steffen Reith and Peter Schwabe
for their constant support, for all the advice and encouragement during these
past years.

Thanks to Steffen Reith, for dangling a carrot in front of my nose already
during my Master’s programme and thus showing me the way into the world
of number theory. Thanks for believing in me and giving me the opportunity.
Without you, all this would never have taken place. Thank you, Steffen!

Thanks to Peter Schwabe, who welcomed me with open arms from the
first second on. Thank you for your patience and countless hours on e.g.
assembly programming. I am really honored that you agreed to be my
supervisor. Thank you, Peter!

Thanks to the members of my reading committee Chloe Martindale,
Diego Aranha, Jörn Steuding, Lejla Batina, and Tim Güneysu for reviewing
this thesis and providing me their valuable comments. It is a great honor to
have each one of you as part of the committee.

Thanks to (Captain) Luca De Feo and Simona Samardjiska for being
part of my defense committee.

Thanks to my Doktorbruder Michael Meyer for the wonderful and fruitful
time with you in the office, for the countless math lessons, and for making
the trips to conferences and summer schools nice and very funny. Without
you this adventure would not have been so enjoyable and so successful.

Thanks to Marc Stöttinger for the countless fruitful discussions, advice,
collaboration, and Spaten.

Thanks, Matthias Kannwischer, for your support and for being my in-
spiration in terms of effectiveness and determination during my PhD.

Thanks, Krijn Reijnders, for the fruitful collaborations and for making
the last period of my PhD journey extremely enjoyable.

v

Thanks to Thorsten Knoll, for your support, our frequent random oracles
meetings, and for making our research group in Wiesbaden feels more like a
group.

Thank to Bo-Yin Yang for invinting me to visit Academia Sinica and the
wonderful country of Taiwan.

Thanks to Krijn Reijnders, Lorenz Panny, Marc Stöttinger, Matthias
Kannwischer, Michael Meyer, and Viola Campos for taking the time to proof-
read parts of this thesis.

It was a great pleasure to be able to work with so many people from
around the world. Thank you to my co-authors Benôıt Viguier, Amber
Sprenkels, Daniel J. Bernstein, Francisco Rodŕıguez-Henŕıquez, Gustavo
Banegas, Hiroshi Onuki, Jana Sotáková, Jesús-Javier Chi-Domı́nguez, Jorge
Chavez-Saab, Juliane Krämer, Krijn Reijnders, Lars Jellema, Lars Müller,
Marcel Müller, Marc Stöttinger, Matthias J. Kannwischer, Mauk Lemmen,
Michael Meyer, Philipp Muth, Simona Samardjiska, Steffen Reith, Steffen
Sanwald, Tanja Lange, Tim Kohlstadt, Thomas Aulbach, Thom Wiggers,
Tung Chou, and Yi Wang.

Thanks to Gustavo Banegas, Matthias Kannwischer, and Michael Meyer
for taking time and being part of our joint lecture on Post-Quantum Cryp-
tography.

Thanks to all my latinos and I am really proud being part of
criptolatino.org.

Thanks to the people in Wiesbaden. In particular, thanks to all the
people in our research group and special thanks to Carlos dos Santos, Daniel
Kloos, and Thorsten Knoll for their continuous support.

Thanks to Continental AG for funding the first 3 years of my PhD posi-
tion.

For my time in Bochum, I want to thank all people at the Max Planck
Institute for Security and Privacy. It was a relatively short but very nice
time.

Thank you to the all people at the Radboud University. I always feel
very welcome.

Muito obrigado à minha famı́lia e amigos no Brasil. Apesar da distância,
é bom saber que vocês estão presentes.

I want to thank my friends, family, and especially my lovely sister Han-
drea because without her help and love, my life would definitely have been
different and I definitely would not have achieved this.

Danke an Erich und Sonja für die Gastfreundschaft und die sehr liebvolle
Verpflegung während schwieriger Phasen in den letzten Jahren.

Thanks to my lovely daugthers, Lua and Malu, for your patience, for
understanding my bad mood and mental absence during certain projects,
and sorry for the boring technical discussions at the dining table.

criptolatino.org

Thanks Viola for her constant love, support, and motivation, as well as
for the countless times technical discussions and help in the last few years.
Without you, I would never have got this far.

And finally, I thank one of the most special persons I met in my life, my
mother, who planted the seed for my path, even though she left me too soon.

Contents

Contents viii

1 Introduction 1
1.1 Outline and Contributions . 3
1.2 Data Management . 7

2 Preliminaries 9
2.1 Elliptic Curves . 9
2.2 Isogenies . 12
2.3 Cryptographic Constructions . 15

2.3.1 Key-Establishment Schemes 15
2.3.2 Digital Signature Schemes 18
2.3.3 Threshold Schemes . 19

2.4 Cryptographic Protocols . 21
2.4.1 Supersingular Case over Fp2 (SIDH) 22
2.4.2 Supersingular Case over Fp (CSIDH) 25

2.5 Physical Attacks . 29
2.5.1 Side-Channel Attacks . 29
2.5.2 Fault Attacks . 30

3 Optimizations 31
3.1 On hybrid SIDH schemes . 31

3.1.1 Introduction . 31
3.1.2 Preliminaries . 32
3.1.3 Montgomery curve arithmetic 33
3.1.4 Twisted Edwards curve arithmetic 34
3.1.5 Switching between Montgomery and twisted Edwards

curves . 36
3.1.6 Elliptic-curve arithmetic in SIDH 37
3.1.7 Twisted Edwards curve arithmetic in SIDH 38
3.1.8 Implementation results 41
3.1.9 Conclusion and future work 42

4 Constant-time Implementation 43
4.1 Efficient constant-time implementation of CSIDH 43

4.1.1 Introduction . 43

viii

4.1.2 CSIDH . 44
4.1.3 Leakage scenarios . 45
4.1.4 Mitigating Leakage . 46
4.1.5 Efficient Implementation 49
4.1.6 Implementation Results 55
4.1.7 Conclusion . 56
4.1.8 Appendix . 56

4.2 CTIDH: faster constant-time CSIDH 61
4.2.1 Introduction . 61
4.2.2 Background . 63
4.2.3 Batching and key spaces 69
4.2.4 Isogeny atomic blocks . 70
4.2.5 Evaluating atomic blocks in constant time 73
4.2.6 Strategies and parameters for CTIDH 78
4.2.7 Constant-time software for the action 81
4.2.8 Software speeds . 89
4.2.9 Appendix . 97

5 Physical Attacks 109
5.1 Protecting CSIDH with Dummy-Operations 109

5.1.1 Introduction . 109
5.1.2 Preliminaries . 110
5.1.3 Attacker Models . 114
5.1.4 Simulation . 116
5.1.5 Practical Experiments 119
5.1.6 Countermeasures . 120
5.1.7 Performance results . 127

5.2 Safe-Error Attacks on SIKE and CSIDH 129
5.2.1 Introduction . 129
5.2.2 Background . 131
5.2.3 Attacks on SIKE . 137
5.2.4 Attacks on CSIDH . 140
5.2.5 Practical Experiments 142
5.2.6 Countermeasures . 147
5.2.7 Conclusion . 149

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE . . 150
5.3.1 Introduction . 150
5.3.2 Preliminaries . 152
5.3.3 Recovering CSIDH keys with E0 side-channel leakage 158
5.3.4 Recovering SIKE keys with side-channel leakage of E6 167
5.3.5 Feasibility of obtaining the side-channel information . 170
5.3.6 Simulating the attacks on SQALE, CTIDH and SIKE 171
5.3.7 Countermeasures and conclusion 174
5.3.8 Flipping 4C as a countermeasure. 176

5.3.9 CSIDH implementations using radical isogenies 176

6 Applications 179
6.1 Fine-grained Access Structures from Isogeny Assumptions . . 179

6.1.1 Introduction . 179
6.1.2 Preliminaries . 181
6.1.3 Key Exchange Mechanism 185
6.1.4 Actively Secure Secret Shared Signature Protocols . . 194
6.1.5 Generalising the Secret Sharing Schemes 195
6.1.6 Conclusion . 198
6.1.7 Appendix . 198

7 Outlook 203

Bibliography 205

Research Data Management 233

Summary 235

Samenvatting 237

About the Author 239

1
Introduction

“Imagine there’s no crypto”;1 even if John Lennon were alive and wrote the
song Imagine [126] today, it is unlikely that it would contain this phrase.
Although the current world without cryptography is at least as unimaginable
as a world without possessions or countries. Cryptography is the science
or even the art of designing protocols and algorithms for protecting data,
and its long and fascinating history dates back to some limited use by the
Egyptians about 4000 years ago, according to Kahn [113]. Among many
other examples, such as the art of secret writing saving Greece from being
conquered by the Persians in the fifth century B.C. [173], the Caesar cipher,
and the Enigma encryption machine [113] during World War II, all of these
methods are based on symmetric cryptography. Symmetric cryptography,
also known as single-key, private-key or secret-key cryptography, is the use
of a single shared secret to encrypt data to safely share it between parties.
Prior to the introduction of public-key or asymmetric cryptography, any
secret information used in encoding secret messages had to be shared in a
private channel before being able to exchange messages. In 1976 [77], Diffie
and Hellman2 proposed public-key cryptography by describing how one-way
functions and trapdoor permutations can be used to build cryptographic
protocols. While secret-key cryptography requires both parties to share a
secret, public-key cryptography uses a pair of keys. Each such key pair
consists of a public key and a private key, with the requirement that it should
not be computationally feasible to derive the private key from the public
key. Public-key cryptography allows building basic mechanisms: public-key
encryption (PKE), non-interactive key-exchange (NIKE), key-encapsulation
mechanisms (KEMs), and digital signatures, which essentially form the basis
of modern digital communication.

The security of these primitives inherently relies on the computational
hardness of the underlying problems. Essentially all public-key protocols
widely deployed today rely on the hardness of the integer factorization prob-

1“crypto” means cryptography.
2Although the invention of public-key cryptography is often attributed to Diffie and

Hellman, we refer to “The Alternative History of Public Key Cryptography” in [173].

1

2 Chapter 1: Introduction

lem (RSA [162]), the discrete-logarithm problem (Diffie and Hellman [77],
ElGamal [93]), or the elliptic-curve discrete-logarithm problem (Miller [139]
and Koblitz [115]).

Unfortunately, due to Shor’s algorithm [170] these problems can be ef-
ficiently solved by a quantum computer. Once sufficiently-large quantum
computers are available, they will be able to break cryptographic schemes
building upon these problems. Apart from being able to decrypt encrypted
messages and forge digital signatures, even today an attacker can store en-
crypted communication and decrypt it retroactively once a quantum com-
puter is available. Due to long-term data storage, this represents a realistic
risk. Further, the transition to a post-quantum era is a complex process [144]:
It requires, e.g., the development and deployment of hardware and software
solutions, the establishment of standards, and the migration of systems.
Thus, according to Lange in [29]: “It is not about developing something we
want to use in ten or 15 years, but something we would need to use now.”

We point out that symmetric schemes are also subject to quantum at-
tacks. However, Grover’s quantum algorithm [101] only yields a quadratic
speedup for key searches, which means that compared to classical security,
doubling the key lengths results in comparable post-quantum security.

Due to the dramatic impact on asymmetric cryptography, in 2016 the
United States National Institute of Standards and Technology (NIST)3

started a public standardization process [152] for post-quantum cryptog-
raphy (PQC), where researchers were asked to submit supposedly quantum-
resistant schemes. The goal of this project is to standardize cryptographic
algorithms that are secure against classical and quantum computers. Specif-
ically, these algorithms should serve as replacements for key establishment
(NIST SP 800-56A [149] and NIST SP 800-56B [150]), and digital signatures
(NIST FIPS186-4 [148]).

NIST’s standardization process consists of several rounds, where schemes
were eliminated with respect to certain evaluation criteria in each round.
From 69 schemes in the first round, only 15 schemes (8 KEMs, 7 signature
schemes) made it to the third round.

Among those submissions the following approaches are being pursued to
realize post-quantum cryptography: code-based, hash-based, isogeny-based,
lattice-based, and multivariate-based cryptography. Since these approaches
are based on different assumptions and have different performance profiles,
they offer both disadvantages and advantages.

After three rounds, on July 05, 2022 NIST selected4 CRYSTALS-
KYBER [9] (key establishment) and CRYSTALS-DILITHIUM [131], Fal-
con [160], and SPHINCS+ [8] (digital signatures) for standardization. How-
ever, NIST also plans to standardize further schemes for key-establishment

3https://www.nist.gov/
4https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-

algorithms-2022

https://www.nist.gov/
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

1.1 Outline and Contributions 3

in the fourth round5 and to start a new call for proposals for digital-signature
algorithms during 2022.

Isogeny-based cryptography, which forms the central topic of this thesis,
is the youngest of the five PQC approaches, and is based on the hardness
of finding isogenies between elliptic curves. Its main advantages are key-
exchange protocols with the smallest key sizes among the post-quantum
schemes and the only non-interactive key exchange.

Isogeny-based cryptography was first proposed by Couveignes in 1997,
but only published in 2006 [66] after the independent rediscovery of his
scheme by Stolbunov and Rostovtsev [164]. This scheme, denoted CRS
(Couveignes–Rostovtsev–Stolbunov), did not gain much attention as the
construction was rather inefficient.

In 2011, following the approach of Charles, Goren, and Lauter [53], a
different isogeny-based scheme with much better performance was proposed
by Jao and De Feo: Supersingular Isogeny Diffie–Hellman (SIDH) [109]. In
2016, a KEM version of SIDH was submitted to the NIST PQC process
under the name SIKE [108], which proceeded to the fourth round.

Major advances in isogeny-based cryptography have been made in the
last years, leading to new isogeny-based schemes. This includes the non-
interactive key exchange CSIDH [49, 12], the SIDH variant B-SIDH [60],
and signature schemes such as SeaSign [71], CSI-FiSh [28] and SQISign [84].

Remark 1. At the time of writing this thesis, Castryck and Decru presented
in [46] a heuristic polynomial-time key-recovery attack that breaks all pro-
posed SIKE parameter sets. Maino and Martindale independently discovered
fundamentally the same attack [132]. Some countermeasures based on mask-
ing information required for these attacks have been proposed [143, 85]. For
further details on these attacks, some improvements, their implementation,
and results, we refer to [163, 155].

Although these attacks have a dramatic impact on SIDH-based schemes,
the impact on the results of this thesis is minor. On the one hand, be-
cause the security of CSIDH-based schemes (see Section 4.1, Section 4.2,
Section 5.1, Section 6.1, and partly Section 5.2 and Section 5.3) is currently
not affected by these attacks and, on the other hand, because the SIDH-
related work (see Section 3.1, and partly Section 5.2 and Section 5.3) partly
dealt with low-level properties of the scheme and can thus be transferred to
future protocols.

1.1 Outline and Contributions

All the work and results presented in this thesis are the result of collabo-
rations with several co-authors. The following section provides the outline

5https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-

submissions

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions

4 Chapter 1: Introduction

of this thesis and an overview of the underlying publications, thereby
highlighting my contributions.

Chapter 2 surveys background underlying the following chapters. It covers
elliptic curves, isogenies between elliptic curves, and cryptographic back-
ground by introducing some basic terminology, as well as an introduction
to the relevant isogeny-based schemes.

Chapter 3 focuses on possible optimizations of SIDH. It investigates how to
efficiently switch between Montgomery and twisted Edwards curves within
SIDH, and how to integrate Edwards curve arithmetic in the SIDH imple-
mentation. This chapter is based on the following preprint:

Michael Meyer, Steffen Reith, and Fabio Campos. On hybrid
SIDH schemes using Edwards and Montgomery curve arithmetic.
Cryptology ePrint Archive, Paper 2017/1213, 2017. https://

eprint.iacr.org/2017/1213

In this work, I primarily contributed by developing and evaluating all
the C code involved in the curve arithmetic. The writing of the paper was
a joint effort of all authors.

Chapter 4 introduces two approaches to evaluate the CSIDH group action
in constant time. In the first section, it presents the first efficient constant-
time implementation of CSIDH. Apart from introducing the usage of dummy
isogenies in this context, it further presents several speedups. The second
algorithm (CTIDH) introduces a new key space and a corresponding new
algorithm achieving speed records for constant-time CSIDH. This chapter is
based on the following two publications:

Michael Meyer, Fabio Campos, and Steffen Reith. On Lions and
Elligators: An efficient constant-time implementation of CSIDH.
In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019,
Chongqing, China, May 8-10, 2019 Revised Selected Papers, vol-
ume 11505 of Lecture Notes in Computer Science, pages 307–325.
Springer, 2019. https://doi.org/10.1007/978-3-030-25510-
7_17

In this work, I implemented and evaluated the optimized constant-time
algorithm in C based on the implementation presented in [49]. I was fur-
ther involved in designing the optimizations. The paper was written by all
authors.

Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung
Chou, Tanja Lange, Michael Meyer, Benjamin Smith, and Jana

https://eprint.iacr.org/2017/1213
https://eprint.iacr.org/2017/1213
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17

1.1 Outline and Contributions 5

Sotáková. CTIDH: faster constant-time CSIDH. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(4):351–387, 2021. https:

//doi.org/10.46586/tches.v2021.i4.351-387

In this work, I was involved in the implementation and evaluation of the
first proof of concept version of CTIDH at an earlier stage of the project.
Further, I was in charge of dealing with the search for optimal parameters.
The writing of the paper was a joint effort of all authors.

Chapter 5 focuses on physically attacking isogeny-based schemes. It eval-
uates how practical fault-injection attacks are on constant-time implemen-
tations of CSIDH based on dummy calculations. Then, it discusses possible
countermeasures to protect against such fault injections. Further, it presents
safe-error attacks against SIKE and CSIDH. For this, it demonstrates that
full key recovery is possible in some scenarios by physically carrying out
two of the presented attacks. Finally, it presents zero-value and correlation
attacks by analyzing the behavior of the zero and six curve in CSIDH and
SIKE. This chapter is based on the following three publications:

Fabio Campos, Matthias J. Kannwischer, Michael Meyer, Hi-
roshi Onuki, and Marc Stöttinger. Trouble at the CSIDH: Pro-
tecting CSIDH with Dummy-Operations Against Fault Injec-
tion Attacks. In 17th Workshop on Fault Detection and Tol-
erance in Cryptography, FDTC 2020, Milan, Italy, September
13, 2020, pages 57–65. IEEE, 2020. https://doi.org/10.1109/
FDTC51366.2020.00015

In this work, I implemented all the practical attacks, including the
Cortex-M4 implementation of CSIDH, and all the countermeasures. Fur-
ther, I was also involved in designing the attacker models and implementing
the simulations in Python. The writing of the paper was a joint effort of all
authors.

Fabio Campos, Juliane Krämer, and Marcel Müller. Safe-error
attacks on SIKE and CSIDH. In Lejla Batina, Stjepan Picek, and
Mainack Mondal, editors, Security, Privacy, and Applied Cryp-
tography Engineering - 11th International Conference, SPACE
2021, Kolkata, India, December 10-13, 2021, Proceedings, vol-
ume 13162 of Lecture Notes in Computer Science, pages 104–125.
Springer, 2021. https://doi.org/10.1007/978-3-030-95085-
9_6

In this work, I was in charge of all the practical experiments. Further,
I was also involved in elaborating the safe-error attacks. The writing of the
paper was a joint effort of all authors.

https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1109/FDTC51366.2020.00015
https://doi.org/10.1109/FDTC51366.2020.00015
https://doi.org/10.1007/978-3-030-95085-9_6
https://doi.org/10.1007/978-3-030-95085-9_6

6 Chapter 1: Introduction

Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc
Stöttinger. Patient zero and patient six: Zero-value and cor-
relation attacks on CSIDH and SIKE. In Benjamin Smith and
Huapeng Wu, editors, Selected Areas in Cryptography - SAC 2022
- 29th International Conference, Ontario, Canada, August 24-26,
2022, Revised Selected Papers, Lecture Notes in Computer Sci-
ence. Springer, 2022. https://eprint.iacr.org/2022/904

In this work (accepted at SAC 2022), the design of all attacks was a
joint effort of all authors. I was in charge of all the practical experiments
on CSIDH and variants. The writing of the paper was a joint effort of all
authors.

Chapter 6 presents an actively-secure threshold scheme in the setting of
hard homogenous spaces allowing fine-grained access structures. This chap-
ter is based on the following publication:

Fabio Campos and Philipp Muth. On actively secure fine-
grained access structures from isogeny assumptions. In Jung Hee
Cheon and Thomas Johansson, editors, Post-Quantum Cryptog-
raphy - 13th International Workshop, PQCrypto 2022, Virtual
Event, September 28-30, 2022, Proceedings, volume 13512 of Lec-
ture Notes in Computer Science, pages 375–398. Springer, 2022.
https://eprint.iacr.org/2021/1109

In this work, I primarily contributed by adapting our approach to the
setting of hard homogeneous spaces and designing the signature protocols.
As before, writing the paper was a joint work of both authors.

Further publications. I decided not to include some publications that
either are not related to isogeny-based cryptography or were published after
the review by the reading committee. The publications related to cryptog-
raphy not appearing in this thesis in chronological order are the following:

Fabio Campos, Michael Meyer, Steffen Sanwald, Marc Stöttinger,
and Yi Wang. Post-quantum cryptography for ECU secu-
rity use cases. In 17th escar Europe : embedded security in
cars (Konferenzveröffentlichung). 2019. https://doi.org/10.

13154/294-6673

Fabio Campos, Tim Kohlstadt, Steffen Reith, and Marc
Stöttinger. LMS vs XMSS: comparison of stateful hash-based
signature schemes on ARM Cortex-M4. In Abderrahmane Ni-
taj and Amr M. Youssef, editors, Progress in Cryptology -

https://eprint.iacr.org/2022/904
https://www.sac2022.ca/
https://eprint.iacr.org/2021/1109
https://doi.org/10.13154/294-6673
https://doi.org/10.13154/294-6673

1.2 Data Management 7

AFRICACRYPT 2020 - 12th International Conference on Cryp-
tology in Africa, Cairo, Egypt, July 20-22, 2020, Proceedings, vol-
ume 12174 of Lecture Notes in Computer Science, pages 258–277.
Springer, 2020. https://doi.org/10.1007/978-3-030-51938-
4_13

Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Müller, Am-
ber Sprenkels, and Benôıt Viguier. Assembly or optimized C
for lightweight cryptography on RISC-V? In Stephan Krenn,
Haya Shulman, and Serge Vaudenay, editors, Cryptology and Net-
work Security - 19th International Conference, CANS 2020, Vi-
enna, Austria, December 14-16, 2020, Proceedings, volume 12579
of Lecture Notes in Computer Science, pages 526–545. Springer,
2020. https://doi.org/10.1007/978-3-030-65411-5_26

Thomas Aulbach, Fabio Campos, Juliane Krämer, Simona
Samardjiska, and Marc Stöttinger. Separating oil and vine-
gar with a single trace. Cryptology ePrint Archive, Pa-
per 2023/335, 2023. https://eprint.iacr.org/2023/335 (ac-
cepted at TCHES 2023)

Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domı́nguez,
Michael Meyer, Krijn Reijnders, Francisco Rodŕıguez-Henŕıquez,
Peter Schwabe, and Thom Wiggers. On the practicality of post-
quantum TLS using large-parameter CSIDH. Cryptology ePrint
Archive, Paper 2023/793, 2023. https://eprint.iacr.org/

2023/793 (under submission)

A list of all publications including further material is available at
https://www.sopmac.org/research/.

1.2 Data Management

The following research datasets have been produced during this PhD research
and are available online:

Chapter 3.1: On hybrid SIDH schemes
https://github.com/sopmacF/hybrid-SIDH

Chapter 4.1: Efficient constant-time implementation of CSIDH
https://github.com/sopmacF/On-Lions-and-Elligators

Chapter 4.2: CTIDH: faster constant-time CSIDH
https://github.com/sopmacF/CTIDH

https://doi.org/10.1007/978-3-030-51938-4_13
https://doi.org/10.1007/978-3-030-51938-4_13
https://doi.org/10.1007/978-3-030-65411-5_26
https://eprint.iacr.org/2023/335
https://ches.iacr.org/2023/
https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2023/793
https://www.sopmac.org/research/
https://github.com/sopmacF/hybrid-SIDH
https://github.com/sopmacF/On-Lions-and-Elligators
https://github.com/sopmacF/CTIDH

8 Chapter 1: Introduction

Chapter 5.1: Protecting CSIDH with Dummy-Operations
https://github.com/csidhfi/csidhfi

Chapter 5.2: Safe-Error Attacks on SIKE and CSIDH
https://github.com/Safe-Error-Attacks-on-SIKE-and-

CSIDH/SEAoSaC

Chapter 5.3: Zero-Value and Correlation Attacks on SIKE and
CSIDH
https://github.com/PaZeZeVaAt/simulation

For more details, see Research Data Management.

https://github.com/csidhfi/csidhfi
https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
https://github.com/PaZeZeVaAt/simulation

2
Preliminaries

This chapter presents the most important background for the following chap-
ters of this thesis. Section 2.1 briefly introduces elliptic curves as a main
building block for isogeny-based cryptography. Section 2.2 gives an introduc-
tion to the use of isogenies between elliptic curves in cryptography following
[59, 70, 135, 156]. For further mathematical background on these topics,
we refer to [187, 172, 89, 59, 70]. Section 2.3 presents some cryptographic
background by introducing the basic terminology and the security properties
of key-establishment, digital-signature, and threshold schemes. Section 2.4
introduces isogeny-based protocols relevant for this thesis such as SIDH and
CSIDH. Lastly, Section 2.5 briefly discuss physical attacks by introducing
the basic aspects of side-channel and fault attacks.

2.1 Elliptic Curves

The security of elliptic-curve cryptography (ECC) relies on the hardness of
the discrete-logarithm problem in the group of points on an elliptic curve
defined over a finite field. The elliptic curve discrete logarithm problem
(ECDLP) is believed to be asymptotically harder than the factorization of
integers or the computation of discrete logarithms in the multiplicative group
of a finite field. Thus, ECC provides smaller key sizes for the same level of
security. In the following, we will introduce the most basic aspects of elliptic
curves required to follow the introduction to isogenies in Section 2.2.

Throughout the preliminaries, K refers to a field, K refers to its algebraic
closure, and E,E1,E2 refer to elliptic curves over a given field.

Definition 1 (Short Weierstraß curve). Let K be a field of
characteristic ∉ {2,3}. A short Weierstraß curve E over K is defined
by the following equation

E ∶ y2 = x3 + ax + b, (2.1)

where a, b ∈ K and 4a3 + 27b2 ≠ 0.

9

10 Chapter 2: Preliminaries

Requiring 4a3 + 27b2 ≠ 0 ensures the non-singularity of E.

For other curve models such as Montgomery, Edwards, and twisted Edwards
curves, which offer computational advantages allowing more efficient group
law operations, we refer to Section 3.1 and further to [140, 80, 17].

The set of points on E over K denoted by E(K) is

E(K) = {∞E} ∪ {(x, y) ∈ K2 ∶ y2 = x3 + ax + b},

where ∞E is the point at infinity. Instead of working with affine coordinates,
we can translate the affine curve Equation (2.1) to a projective curve defined
by the equation

E ∶ Y 2Z =X3 + aXZ2 + bZ3,

with coordinates (X ∶ Y ∶ Z) ∈ E and x = X/Z and y = Y /Z for converting
the coordinates. The point at infinity is given by ∞E = (0 ∶ 1 ∶ 0), which
lacks an affine representation. Based on this resulting set of points, which
carries a group structure, we define the additive group law [172] as follows.

Theorem 1 (Group Law). The addition of points on an elliptic curve E
over K satisfies the following properties:

• (identity) P +∞E = P for all points P ∈ E(K).

• (inverse) For any P ∈ E(K), there exists a unique P ′ ∈ E(K) (com-
monly denoted by −P) such that P + P ′ =∞E.

• (closed) For any points P,Q ∈ E(K), it follows P +Q ∈ E(K).

• (associativity) For any points P,Q,R ∈ E(K), we have (P +Q) +R =
P + (Q +R).

For elliptic curves defined over R, the addition of points is calculated as
follows. Let P,Q be points on E(R), and L be the line connecting P and Q
(see Figure 2.1 a) or a tangent line to E(R) in the case P = Q (see Figure 2.1
b). Then, let R be the third point of intersection of L with the curve. Let
L′ be the line connecting R and ∞E . Then P + Q is the point where L′

intersects the curve. Based on this chord-and-tangent addition rule and on
the group law from Theorem 1, (E(K),+) is an Abelian group. We refer to
[187, Section 2.2] for more details.

From now on, we will mainly focus on elliptic curves defined over finite
fields. For this, we set K = Fq, such that p is prime and q = pn a power of p
where n ∈ Z+. Thus, K is a finite field with q elements and characteristic p.
The previously defined properties also apply to elliptic curves defined over
finite fields.

Based on the group law, we can define a subgroup of E called torsion
subgroup as follows.

2.1 Elliptic Curves 11

•P •Q •
R

•
P + Q

a) “Chord rule”

•P •
R

•
2P

b) “Tangent rule”

Figure 2.1: Geometric representation of the chord-and-tangent addition rule.

Definition 2 (m-Torsion Subgroup). Let E be an elliptic curve, m a positive
integer, and let [m] be the (scalar-)multiplication-by-m map

[m] ∶ E → E.

Then, the kernel of the map is denoted by E[m]. We refer to E[m] as the
m-torsion subgroup:

E[m] = {P ∈ E(K) ∣ [m]P =∞E}.

Further, we can define the order of points as follows.

Definition 3 (Order of Points). Let P ∈ E(K) be a point. Then the order
of P is either the smallest integer m > 0 such that [m]P =∞E or infinite, if
no such integer exists.

The order of P determines how many points the cyclic subgroup gener-
ated by P ⟨P ⟩ = {P, [2]P, [3]P, ...,∞E} contains. Since the structural prop-
erties of an elliptic curve are strongly related to the p−torsion subgroup, we
further define:

Definition 4 (Supersingular/Ordinary Curves). Let E be an elliptic curve
defined over a field K of characteristic p > 0. If E[p] ≃ Z/pZ then E is called
ordinary, and if E[p] ≃ {∞E}, then E is called supersingular6.

Since the cryptographic applications studied in this thesis work on super-
singular curves, this thesis will only focus on supersingular elliptic curves.
Since K is finite, E(K) is also a finite group.

Theorem 2 (Hasse’s Theorem). Let E(K) be an elliptic curve over a finite
field K with q elements. Then, the number of points #E(K) satisfies

q + 1 − 2
√
q ≤#E(K) ≤ q + 1 + 2

√
q.

6The term “supersingular” is not related to the term “singular”.

12 Chapter 2: Preliminaries

2.2 Isogenies

After briefly introducing elliptic curves, we can zoom out and look at maps
between elliptic curves. Since these maps are at the heart of all isogeny-based
cryptographic protocols, they represent the central topic of this thesis.

Definition 5 (Isogeny). An isogeny φ is a non-constant morphism between
two elliptic curves E1 and E2

φ ∶ E1 → E2,

which maps ∞E1 , the point at infinity of E1, to ∞E2 , the point at infinity of
E2,

φ(∞E1) =∞E2 .

Two curves E1, E2 are called isogenous whenever there exists an isogeny
φ ∶ E1 → E2, and vice versa.

Let Hom(E,E1) be the set of all isogenies E → E1 over K together with
the zero map.7 Further, let φ,φ′ ∈ Hom(E,E1) and P ∈ E(K), then the set
Hom(E,E1) together with a point-wise addition has a group structure given
by (φ + φ′)(P) = φ(P) + φ′(P).

The multiplication-by-m map [m] ∶ E → E (see Definition 2) that maps
any point on E to its multiple, and the identity map φ(P) = P are examples
for isogenies. Since they map from E to itself, they are endomorphisms.

Definition 6 (Endomorphism). Let E be an elliptic curve. An endomor-
phism of E is an isogeny from E to itself φ ∶ E → E, or the zero map. In
this case, we denote

φ ∈ End(E) = Hom(E,E).

Along with the point-wise addition from Hom(E,E) and the composition
of endomorphisms as multiplication, this set forms the endomorphism ring
of E.

In the case of elliptic curves over finite fields, we should consider the
following special endomorphism.

Definition 7 (Frobenius Endomorphism). Let E be an elliptic curve over
a finite field K. Then the map

π ∶ E → E, (x, y)↦ (xq, yq)

is called the (qth-power) Frobenius endomorphism.

Isogenies can be classified depending on the relation between their degree
as a rational map and the finite number of points mapped to ∞, i.e. their
kernel.

7The zero map sends everything to zero.

2.2 Isogenies 13

Definition 8 (Separable Isogenies). An isogeny φ is called separable if the
cardinality of the kernel of the isogeny equals the degree of the isogeny such
that

ker(φ) = deg(φ),

and it is called inseparable otherwise.

In this thesis, we are mostly interested in separable isogenies.

Proposition 3. Let E1 be an elliptic curve and let G be a finite subgroup
G ⊂ E1, both defined over K. Then there is an elliptic curve E2 and a
separable isogeny φG ∶ E1 → E2 such that ker(φG) = G. Further, the pair
(E2, φG) is unique up to post-composition with isomorphisms.

In this case, the curve E2, also called codomain curve, is often written
as E1/G. For more details on how to compute isogenies and the resulting
codomain curve, we refer to [184, 19].

Given two elliptic curves defined over a finite field, to determine whether
they are isogenous, we can verify that the following applies.

Theorem 4 (Tate’s Theorem [187]). Two elliptic curves E1, E2 defined
over a finite field K are isogenous over K if and only if #E1(K) =#E2(K).

In fact, the relation of being isogenous describes an equivalence relation
where the resulting equivalence classes are the set of isomorphism classes of
supersingular elliptic curves. Two elliptic curves are isomorphic over K if
and only if they have the same j-invariants.

Definition 9 (j-invariant). Let E be an elliptic curve given by a Weierstrass
equation E ∶ y2 = x3 + ax + b. The j-invariant of E is defined as

j(E) = 1728(
4a3

4a3 + 27b2
) .

The number of isomorphism classes is finite and can be calculated as follows.

Theorem 5 (Number of Isomorphism Classes). Let K be a finite field of
characteristic p > 3, Then, there are (up to isomorphism) exactly

⌊p/12⌋ + εp

supersingular elliptic curves, where εp = 0,1,1,2 if p ≡ 1,5,7,11 mod 12,
respectively.

For every isogeny φ ∶ E1 → E2 there exists a complementary isogeny in
the opposite direction φ̂ ∶ E2 → E1, the dual isogeny.

Theorem 6 (Dual Isogeny). Let φ ∶ E1 → E2 be an isogeny. There is a
unique isogeny φ̂ ∶ E2 → E1 such that φ̂ ○ φ = [degφ].

14 Chapter 2: Preliminaries

Based on the previous facts, we can look at isogenies as edges in a graph
as follows.

Definition 10 (Isogeny Graph). Let K be a finite field, S be a set of positive
integers not divisible by char(K). We define the S-isogeny graph GK,S(V,E)
over K as follows:

• The vertices V represent elliptic curves defined over K, up to K-
isomorphisms.

• The edges E represent isogenies of degree ℓ ∈ S defined over K, up to
post-composition with K-isomorphisms.

In the case S = {ℓ}, we write GK,ℓ(V,E) for the ℓ-isogeny graph.

The resulting graph is undirected due to the existence of dual isoge-
nies. The security of the resulting schemes is strongly related to the mixing
properties of the underlying isogeny graph. In fact, as shown in [159], such
ℓ-isogeny graphs are connected, (ℓ + 1)-regular8, and have the Ramanujan
property [159]. Informally, this means that any node within the graph can
be reached from any other node with a small number of steps (rapid mix-
ing). For more details on the rapid-mixing properties of such graphs, we
refer to [110].

8A k-regular graph is a graph where each vertex has k neighbors.

2.3 Cryptographic Constructions 15

2.3 Cryptographic Constructions

In the following sections, we introduce the terminology and the security
properties of public-key protocols. For further details on the security notions,
we refer to [34].

2.3.1 Key-Establishment Schemes

The main motivation of key establishment is to allow parties to agree on
a shared secret usually used for subsequent communication. In the follow-
ing, we introduce three approaches for setting up such a key-establishment
process.

2.3.1.1 Public-Key Encryption

Definition 11 (Public-Key Encryption (PKE)). Let M be a message space,
PK be a public-key space, SK be a private-key space, and C be a ciphertext
space. A public-key encryption scheme is defined by the tuple of probabilistic
algorithms (KeyGen, Encrypt, Decrypt) as follows:

KeyGen() ∶ Ø→ PK × SK
takes no inputs and outputs a key pair consisting of a public key pk ∈
PK and a secret key sk ∈ SK.

Encrypt(pk,m) ∶ PK ×M → C
takes as input a public key pk ∈ PK and a message m ∈M and outputs
a ciphertext c ∈ C representing the encrypted message.

Decrypt(sk, c) ∶ SK ×C →M
takes as input a secret key sk ∈ SK and a ciphertext c ∈ C and outputs
the decrypted message m′ ∈M .

For correctness, it is required that for any key pairs (pk, sk) ∈ PK × SK
generated by the algorithm KeyGen and any message m ∈M the algorithms
Encrypt and Decrypt satisfy the constraint

Decrypt(sk,Encrypt(pk,m)) =m.

2.3.1.2 Key-Encapsulation Mechanism

Definition 12 (Key-Encapsulation Mechanism (KEM)). Let PK be a
public-key space, SK be a private-key space, C be a ciphertext space, and
S be a shared-secret space. A KEM is defined by the tuple of probabilistic
algorithms (KeyGen, Encaps, Decaps) as follows:

16 Chapter 2: Preliminaries

KeyGen() ∶ Ø→ PK × SK
takes no inputs and outputs a key pair consisting of a public key pk ∈
PK and a secret key sk ∈ SK.

Encaps(pk) ∶ PK → C × S
takes as input a public key pk ∈ PK and outputs a ciphertext c ∈ C and
a shared secret s ∈ S.

Decaps(sk, c) ∶ SK ×C → S
takes as input a secret key sk ∈ SK and a ciphertext c ∈ C and outputs
a shared secret s′ ∈ S.

For correctness, it is required that, for any key pairs (pk, sk) ∈ PK ×SK
generated by the algorithm KeyGen and given

(c, s)← Encaps(pk)

the algorithms Decaps satisfies the constraint

s = Decaps(sk, c).

2.3.1.3 Non-Interactive Key Exchange

Definition 13 (Non-Interactive Key-Exchange (NIKE)). Let PK be a
public-key space, SK be a private-key space, and S be a shared-secret space.
A NIKE protocol is defined by the tuple (KeyGen, SharedKey) as follows:

KeyGen() ∶ Ø→ PK × SK
takes no inputs and outputs a key pair consisting of a public key pk ∈
PK and a secret key sk ∈ SK.

SharedKey(pk1, sk2) ∶ PK × SK → S
takes as input a public key pk1 ∈ PK and a secret key sk2 ∈ SK and
outputs a shared secret s ∈ S.

For correctness, it is required that, for any key pairs (pk1, sk1) ∈ PK×SK
and (pk2, sk2) ∈ PK ×SK generated by the algorithm KeyGen the algorithm
SharedKey satisfies the constraint:

SharedKey(pk1, sk2) = SharedKey(pk2, sk1).

The most common two models for analyzing the security of PKEs and
KEMs are the indistinguishability under chosen-plaintext attacks (IND-CPA)
and the indistinguishability under adaptive chosen-ciphertext attacks (IND-
CCA).

2.3 Cryptographic Constructions 17

Definition 14 (IND-CPA). Let PKE be a public-key encryption scheme de-
fined by the tuple of probabilistic algorithms (KeyGen, Encrypt, Decrypt)
with message space M . Consider the IND-CPA security game as in Fig-
ure 2.2. For a PKE we define the advantage of A winning the game as

AdvIND-CPA
PKE (A) ∶= ∣Pr[IND-CPA(A) = 1] −

1

2
∣ .

Game IND-CPA(A)

(pk, sk)← KeyGen()

b←$ {0,1}

(m0,m1)← A(pk)

c← Encrypt(pk,mb)

b′ ← A(pk, c)

return b = b′

Figure 2.2: IND-CPA game for a PKE.

In the IND-CPA model (passive attacks) an adversary with knowledge
of two candidates for the plaintext is not able to distinguish which one is
related to the challenged ciphertext.

Definition 15 (IND-CCA). Let KEM be a key-encapsulation mechanism de-
fined by the tuple of probabilistic algorithms (KeyGen, Encaps, Decaps) with
message space M . Consider the IND-CCA security game as in Figure 2.3.
For a KEM we define the advantage of A winning the game as

AdvIND-CCA
KEM (A) ∶= ∣Pr[IND-CCA(A) = 1] −

1

2
∣ .

Game IND-CCA(A)

(pk, sk)← KeyGen()

b←$ {0,1}

(s0, c
∗
)← Encaps(pk)

s1 ←$ S

b′ ← ADEC
(pk, c, sb)

return b = b′

Oracle DEC(c)

if c ≠ c∗

return Decaps(sk, c)

else

return ⊥

Figure 2.3: IND-CCA game for a KEM.

18 Chapter 2: Preliminaries

In the IND-CCA model (active attacks) the more powerful adversary
is given access to an oracle which decrypts all chosen but the challenged
ciphertexts. Again, the adversary should not be able to distinguish between
two ciphertexts.

Fujisaki and Okamoto [88] introduced a transformation that transforms
CPA-secure schemes into CCA-secure schemes. We remark that any secure
PKE with sufficiently large plaintext space can be trivially turned into a
secure KEM and vice versa. Further, according to [87] any secure NIKE [79]
scheme can be generically converted into an IND-CCA secure PKE scheme.

2.3.2 Digital Signature Schemes

Digital signatures are commonly used for achieving integrity and authenticity
of data.

Definition 16 (Digital Signature Schemes). Let M be a message space,
PK be a public-key space, SK be a private-key space, and SM be a signed-
message space, then a signature scheme is defined by the tuple (KeyGen,
Sign, Open) as follows:

KeyGen() ∶ Ø→ PK × SK
takes no inputs and outputs a key pair consisting of a public key pk ∈
PK and a secret key sk ∈ SK.

Sign(sk,m) ∶ SK ×M → SM
takes as input a secret key sk ∈ SK and a message m ∈M and outputs
a signed message sm ∈ SM .

Open(pk, sm) ∶ PK × SM →M ∪ {⊥}
takes as input a public key pk ∈ PK and a signed message sm ∈ SM
and outputs either the message m ∈ M if the signature is valid or an
error ⊥ if the signature is not valid, respectively.

We note that in the standard definition9 of digital signature schemes
Sign(sk,m) returns a signature rather than a signed message.

For correctness, it is required that, for any key pairs (pk, sk) ∈ PK ×SK
generated by the algorithm KeyGen and any message m ∈M the algorithms
Open and Sign satisfy the constraint:

Open(pk,Sign(sk,m)) =m.

The most common model for analyzing the security of digital signature
schemes is the existential unforgeability under adaptive chosen-message at-
tacks (EU-CMA) [98, 99].

9Following the Sign/Verify definition instead of the Sign/Open definition required by
NIST.

2.3 Cryptographic Constructions 19

Definition 17 (EU-CMA). Let SIG be a signature scheme defined by the
tuple (KeyGen, Sign, Open) with message space M . Consider the EU-CMA
security game as in Figure 2.4. For a signature scheme we define the advan-
tage of A winning the game as

AdvEU−CMA
SIG (A) ∶= Pr[EU-CMA(A) = 1].

Game EU-CMA(A)

(pk, sk)← KeyGen()

MA ← ∅

while

m′ ← A(pk)

sm′ ← ASIGN
(pk,m′)

MA =MA ∪m
′

endwhile

m∗ ← A(pk)

sm∗ ← AFORGE
(pk,m∗)

return [Open(pk, sm∗) =m∗] ∧ [m∗ ∉MA]

Oracle SIGN(m)

return Sign(sk,m)

Figure 2.4: EU-CMA game for a signature scheme.

In the EU-CMA model, an adversary with access to a signing oracle must
not be able to produce a valid signature for any message, which has not been
signed by the signing oracle.

2.3.3 Threshold Schemes

The main motivation for threshold cryptography is to provide techniques
allowing to securely distribute trust in the operation of cryptographic prim-
itives. Informally, a threshold scheme (or secret-sharing scheme) allows to
share a secret among shareholders such that any collaborating set with a
sufficient number of participants can recover the shared secret, while any
other (unauthorized) set is not able to get any additional information about
the shared secret. In the following, we present the definition for the common
case of k-out-of-n and refer to Section 6.1 for more details.

Definition 18 ((k,n)-Secret Sharing Schemes). Let S be a key space, then
a (k,n) or k-out-of-n secret-sharing scheme is defined by the pair (Share,
Rec) as follows:

Share(s) ∶ S → Sn

takes as input a key s ∈ S and outputs a n-tuple of shares (s1, . . . , sn),
where s1, . . . , sn ∈ S.

20 Chapter 2: Preliminaries

Rec(s1, . . . , sj) ∶ S
j → S

takes as input a j-tuple of shares (s1, . . . , sj) ∈ S with k ≤ j ≤ n and
outputs the shared key s ∈ S.

For correctness, it is required that, for any key s ∈ S and for any subset
S′ with #S′ ≥ k of Share(s), the algorithm Rec satisfies the constraint

Rec(S′) = s.

There exists no algorithm A such that A(S′′) = s with #S′′ < k. Further, the
distribution of Share(s) and Share(s′) for any s, s′ ∈ S should be identical.

2.4 Cryptographic Protocols 21

2.4 Cryptographic Protocols

In this section we briefly describe two key-exchange protocols based on isoge-
nies. In particular, we will start with elliptic-curve Diffie–Hellman (ECDH)
as a basis and then look at two isogeny-based protocols, which are the main
focus of interest in this thesis.

The most fundamental basis for such public-key exchange protocols is
the Diffie–Hellman key-agreement scheme [77]. First based on the discrete-
logarithm problem on multiplicative groups of finite fields, it was adapted
to elliptic-curve discrete logarithms by Miller [139] and Koblitz [115].

The simplified workflow of the elliptic-curve Diffie–Hellman (ECDH) pro-
tocol, as shown in Figure 2.5, is as follows. First, both participants (Alice
and Bob) agree on a set of domain parameters: An elliptic curve E over a
field Fp with a prime p and a point P ∈ E of prime order ℓ generating the
cyclic subgroup of the form ⟨P ⟩ = {∞E , P, [2]P, [3]P, ..., [(ℓ − 1)]P}. Both
parties randomly sample a private key a resp. b where a, b ∈ (Z/ℓZ)∗ and
calculate the public key Pa = [a]P resp. Pb = [b]P using the point P as a
generator. Then Alice’s key pair is (Pa, a) and Bob’s key pair is (Pb, b). The
parties exchange each other’s public keys. Finally, the result calculated by
both parties is equal, since [b]Pa = [ba]P = [ab]P = [a]Pb due to commuta-
tivity of the group law, and thus a shared secret. The security of this key
exchange protocol relies on the hardness of the following two computational
problems.

Problem 1 (Computational Diffie–Hellman problem (CDH)). Given P ,
[a]P , and [b]P ∈ E(Fp), compute [ab]P .

Problem 2 (Decisional Diffie–Hellman problem (DDH)). Given P , [a]P ,
and [b]P ∈ E(Fp), and a point Q ∈ E(Fp) determine whether or not Q =
[ab]P .

We note that DDH reduces to CDH [76].

Although these problems are believed to be hard in the classical setting,
they can be solved efficiently using Shor’s algorithm [170] on a sufficiently
large quantum computer.

Instead of working with points on a single elliptic curve, isogeny-based
cryptography is based on isogenies between elliptic curves, as shown in Fig-
ure 2.6. The next sections introduce two isogeny-based schemes which are
supposed to be quantum resistant. All the results in the remainder of this
thesis are based on these schemes.

22 Chapter 2: Preliminaries

Public parameter:
E(Fp), P ∈ E(Fp) of prime order ℓ

Alice

samples secret a

Pa = [a]P

[a]Pb = [ab]P

Bob

samples secret b

Pb = [b]P

[b]Pa = [ba]P

Pa

Pb

Figure 2.5: Elliptic-curve Diffie–Hellman (ECDH).

E EA

EB EAB

φA

φB

φ′A

φ′B

Figure 2.6: High-level view of an isogeny-based DH protocol where isogenies
are denoted by φi and φ′i where i ∈ {A,B}.

2.4.1 Supersingular Case over Fp2 (SIDH)

In [109], Jao and De Feo proposed a new approach for public-key crypto-
graphic protocols based on the difficulty of computing isogenies between su-
persingular elliptic curves. The supersingular isogeny Diffie–Hellman (SIDH)
protocol uses isomorphism classes of supersingular curves over Fp2 . In the
following, we review the most fundamental ideas and refer to [109] for more
details on SIDH.

The simplified workflow of the SIDH protocol, as shown in Figure 2.7,
is as follows. First, we choose a prime p = ℓeAA ⋅ ℓeBB − 1 such that ℓA, ℓB are
small distinct primes and ℓeAA ≈ ℓ

eB
B . Further, we work with a curve E such

that #E(Fp2) = (p + 1)2 which means that all points of order ℓeAA and all
points of order ℓeBB (the torsion groups E[ℓeAA] and E[ℓeBB] respectively) are
defined over Fp2 . Moreover, we can use points PA and QA of order ℓeAA as
basis for the subgroups

⟨PA⟩, ⟨PA +QA⟩, ⟨PA + [2]QA⟩, . . . , ⟨PA + [ℓeAA − 1]QA⟩,

2.4 Cryptographic Protocols 23

Public parameter:
E(Fp2), ℓA, ℓB , eA, eB , PA,QA, PB ,QB

Alice

samples secret sA < ℓ
eA
A

ker(φA) = ⟨PA + [sA]QA⟩
φA ∶ E → EA

ker(φ′A) = ⟨φB(PA)+
[sA]φB(QA)⟩

φ′A ∶ EB → EBA

j(EBA) = j(EAB)

Bob

samples secret sB < ℓ
eB
B

ker(φB) = ⟨PB + [sB]QB⟩
φB ∶ E → EB

ker(φ′B) = ⟨φA(PB)+
[sB]φA(QB)⟩
φ′B ∶ EA → EAB

j(EAB) = j(EBA)

EA, φA(PB), φA(QB)

EB , φB(PA), φB(QA)

Figure 2.7: SIDH key exchange.

where each of these subgroups determines a unique isogeny (up to isomor-
phism) of order ℓeAA . This applies analogously to points PB and QB of order
ℓeBB . Thus, the set of domain parameters are p,E, ℓA, ℓB , eA, eB , and a ba-
sis PA,QA of the ℓeAA -torsion on E(Fp2), and similarly a basis PB ,QB of
the ℓeBB -torsion on E(Fp2) as described above. Both participants randomly
sample a private key si ∈ {0,1, . . . , ℓ

ei
i − 1}, calculate Pi + [si]Qi and the

secret isogeny φi with kernel10 ker(φi) = ⟨Pi + [si]Qi⟩ where i ∈ {A,B}. In
order to agree on a shared secret, both parties have to calculate an isogeny
φ′A on EB and φ′B on EA that are analogous to φA resp. φB . Since there
is no corresponding torsion basis points on EA,EB publicly available, both
parties have to include additional points in their public keys. For this, Alice
additionally sends the image of Bob’s torsion basis points φA(PB), φA(QB)
and vice versa. In summary, Alice’s secret key is sA and her public key is
(EA, φA(PB), φA(QB)). This applies analogously to Bob. Since the result-
ing curves EBA and EAB are isomorphic, their j-invariant can serve as a
shared secret. Figure 2.8 shows a toy example for the isogeny class of the
supersingular curve E ∶ y2 = x3 + x over F4312 where p = 24 ⋅ 33 − 1 = 431.

Computing the full isogeny φi at once would be very inefficient because
the cost grows linearly with the degree. Hence, SIDH decomposes this ℓeii
isogeny into ei computations of ℓi-isogenies. For optimal strategies on cal-
culating such isogenies, we refer to [109].

10Instead of using kernels of the form ⟨[s′i]Pi+ [si]Qi⟩ with almost no loss in generality,
one can use private keys with s′i = 1 [63].

24 Chapter 2: Preliminaries

Figure 2.8: Graph with isomorphism classes of supersingular curves over
F4312 with 2-isogenies (red) and 3-isogenies (blue).

The security of the SIDH key-exchange protocol relies on the hardness
of the following problems.

Problem 3 (Supersingular Decision Diffie-Hellman (SSDDH) Problem).
Given the public parameters ℓA, ℓB , eA, eB , p,E,PA,QA, PB ,QB the elliptic
curves EA,EB, the points ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA), and a tuple
sampled with probability 1/2 from one of the two distributions:

• (EA,EB , ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA),EAB) with

EAB ≅ E/⟨[mA]PA + [nA]QA, [mB]PB + [nB]QB⟩.

• (EA,EB , ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA),EC) with

EC ≅ E/⟨[m
′
A]PA + [n′A]QA, [m

′
B]PB + [n′B]QB⟩

where m′
A, n

′
A,m

′
B , n

′
B are chosen randomly. Determine from which

distribution the tuple is sampled.

Problem 4 (Supersingular Computational Diffie–Hellman (SSCDH) Prob-
lem). Given the public parameters ℓA, ℓB , eA, eB , p,E,PA,QA, PB ,QB the
elliptic curves EA,EB, and the points ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA),
find the j-invariant of E/⟨PA + [sA]QA, PB + [sB]QB⟩.

Analogously to DDH and CDH, we note that SSDDH reduces to SSCDH
[182]. Further, both the decisional and computational assumptions depend
on the following computational problem.

Problem 5 (Computational Supersingular Isogeny (CSSI) Problem). Given
the public parameters ℓA, ℓB , eA, eB , p,E,PA,QA, ϕA(PB), ϕA(QB) and the
elliptic curve EA, compute a degree-ℓeAA isogeny φA ∶ E → EA.

2.4 Cryptographic Protocols 25

The fact of having additional points ϕA(PB), ϕA(QB) as part of the pub-
lic keys raised some concern due to possible so-called torsion-point attacks
[86, 75]. Regarding the security of the underlying problems on the classical
side, since the key spaces have size ≈

√
p, generic meet-in-the-middle attacks

have a complexity of O(4
√
p). However, based on [1] the effective costs of

such attacks led to a reduction of the first proposed parameter sizes. On the
quantum side, the initially proposed parameters should achieve a higher se-
curity level based on the effective costs of the quantum computation (RAM
model) of a claw finding attack [175] with complexity of O(6

√
p) [111].

SIDH is the basis of a KEM called supersingular isogeny key encapsula-
tion (SIKE) [108], which is the only isogeny-based submission to the NIST
PQC process and currently under consideration by the NIST as a 4th round
candidate.

Remark 2. Because of the attacks presented in [46, 132], the SIKE team
states that SIKE and SIDH should not be used.11

2.4.2 Supersingular Case over Fp (CSIDH)

In 2018, Castryck, Lange, Martindale, Panny, and Renes published the com-
mutative supersingular isogeny Diffie–Hellman (CSIDH) scheme [49]. The
presented key-exchange scheme is based on the works of Couveignes [66]
and Rostovtsev–Stolbunov [164]. While the scheme of Couveignes and
Rostovtsev–Stolbunov is based on isogenies between ordinary elliptic curves,
CSIDH works with isogenies between isomorphism classes of supersingular
curves defined over Fp where p is prime. In this section, we only present
the algorithmic aspects of CSIDH and refer to [49] for the mathematical
background and a more detailed description.

CSIDH works on a set of curves with #E(Fp) = p + 1 and the same
Fp-rational endomorphism ring. Thereby, isogenies are represented by ideal
classes in this ring forming a group. Thus, an ideal a can act on a curve
E to produce the codomain curve EA, denoted as the CSIDH group action
a ∗E = EA. The CSIDH protocol chooses p such that p+ 1 = 4∏

n
i=1 ℓi where

ℓ1, . . . , ℓn are distinct odd primes.
In particular, we are interested in specific isogenies li (of degree ℓi) de-

fined by the kernel G = E[ℓi] ∩E[π − 1], where π stands for the Frobenius
endomorphism (see Definition 7), i.e., Fp-rational points that have ℓi-torsion.
As E has p + 1 points over Fp, we get

E(Fp) ≅ Z/(p + 1) ≅ Z/4 ×Z/ℓ1 ×⋯ ×Z/ℓn.

This implies that for each ℓi there exist non-trivial Fp-rational points
P ∈ E[ℓi]∩E[π−1], and that all but one of them, ∞E , will generate the kernel

11https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/

documents/round-4/submissions/sike-team-note-insecure.pdf

https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/round-4/submissions/sike-team-note-insecure.pdf

26 Chapter 2: Preliminaries

Figure 2.9: ℓi-isogeny graph for degrees 3 (blue), 5 (green), and 11 (red)
(Union of cycles).

G. Since the codomain curve E′ of such an isogeny is again supersingular
and so #E′(Fp) = p + 1 (see Theorem 4), li must also be applicable to E′.
This implies a group action of the elements li on the supersingular curves E
over Fp, which we denote by [li] ∗E. This group action is commutative:

[lilj] ∗E ≅ [li] ∗ ([lj] ∗E) ≅ [lj] ∗ ([li] ∗E) ≅ [lj li] ∗E.

The dual isogeny (see Theorem 6) associated to l is denoted as l−1, and is
defined by the kernel G = E[ℓi] ∩E[π + 1].

Thus, due to the commutativity of the underlying group action, the NIKE
based on CSIDH is very similar to ECDH, as shown in Figure 2.10. Both par-
ties first sample a secret a resp. b by sampling an exponent vector (a1, . . . , an)
with ∣ai∣ ≤M for a given bound M ∈ N. This list of exponents represents an
ideal class a =∏

n
i=1 l

ai

i such that

EA = a ∗E = l
a1

1 ∗ (⋯∗ (lan
n ∗E)).

In fact, for calculating the action of the ideals lai

i for i = 1, . . . , n, we
compute ∣ai∣ ℓi-isogenies. After computing the group action, as described
in Algorithm 1, they exchange each other’s public keys EA = a ∗ E resp.
EB = b ∗ E. Finally, the result calculated by both parties is equal since
EBA = a ∗EB = ab ∗E = b ∗EA = EAB and thus represents a shared secret.
Figure 2.9 shows a toy example for the isogeny class of the supersingular
curve E ∶ y2 = x3 + x over F659 where p = 659 = 4 ∗ 3 ∗ 5 ∗ 11 − 1.

In CSIDH, no further information such as evaluated torsion points as in
SIDH are included in public keys. Thus, the security of CSIDH relies on the
hardness of the following pure isogeny-finding problems.

Problem 6 (Group Action Inverse Problem (GAIP)). Given two curves
E,EAB, find the ideal class a such that EAB = a ∗E.

2.4 Cryptographic Protocols 27

Public parameter:
E(Fp),M = {−B, ...,B}

Alice

samples secret (a1, . . . , an)
where ai ∈M
a =∏

n
i=1 l

ai

i

EA = a ∗E

EBA = a ∗EB

Bob

samples secret (b1, . . . , bn)
where bi ∈M
b =∏

n
i=1 l

bi
i

EB = b ∗E

EAB = b ∗EA

EA

EB

Figure 2.10: CSIDH key exchange.

Assuming that an adversary is able to compute the shared secret EAB

without being able to solve the GAIP problem, we define the following prob-
lem.

Problem 7 (Group Action Computational Diffie–Hellman Problem
(GAIP-CDH)). Given E,EA = a ∗ E, and EB = b ∗ E, find EAB such that
EAB = a ∗ (b ∗E).

The GAIP-CDH is often called parallelisation problem. The intuitive
decisional version of this problem is as follows.

Problem 8 (Group Action Decisional Diffie–Hellman Problem
(GAIP-DDH)). Given EA = a ∗ E,EB = b ∗ E and EC = c ∗ E, dis-
tinguish whether c = a ⋅ b or c was randomly sampled.

From a classical perspective, the security of CSIDH is related to the size
of the key space. Thus, the key space has to be large enough to protect
against brute force attacks or meet-in-the-middle variants. On the quantum
side, some recent works [35, 158, 54] recommend increasing the underlying
prime sizes within CSIDH. However, the exact quantum security of CSIDH
is still subject of debate. For further details on the quantum security of
CSIDH, we refer to [54].

28 Chapter 2: Preliminaries

Algorithm 1: Evaluating the class group action.

Input : a′ ∈ Fp such that E ∶ y2 = x3 + a′x2 +x is supersingular, and
a list of integers (a1, ..., an) with ai ∈M for all i ≤ n.

Output: a ∈ Fp, the curve parameter of the resulting curve EA.

1 while some ai ≠ 0 do
2 Sample a random x ∈ Fp.
3 Set s← +1 if x3 + a′x2 + x is a square in Fp, else s← −1.
4 Let S = {i ∣ sign(ai) = s}.
5 if S = ∅ then
6 Go to line 2.

7 P = (x ∶ 1), k ←∏i∈S ℓi, P ← [(p + 1)/k]P . // p = 4 ⋅ ℓ1 ⋅ ... ⋅ ℓn − 1

8 foreach i ∈ S do
9 K ← [k/ℓi]P . if K ≠∞ then

10 Compute a degree-ℓi isogeny φ ∶ E → EA with
ker(φ) = ⟨K⟩.

11 a′ ← a, P ← φ(P), k ← k/ℓi, ai ← ai − s.

12 return a.

2.5 Physical Attacks 29

2.5 Physical Attacks

In the following sections, we introduce the basic aspects of physical attacks
and refer to [133, 183] for further details on this topic.

Cryptanalysis refers to the process of analyzing cryptographic systems
looking for vulnerabilities or leaks of secret information. In classical or math-
ematical cryptanalysis, where a black-box model is applied, the adversaries
are only allowed to interact with the cryptographic primitive over the pre-
defined channels. Thus, only plaintexts and ciphertexts are available for
analysis (see models for analyzing security in Section 2.3). However, once
cryptographic primitives are deployed on physical devices, the assumption of
the black-box model is missing an addition channel of information. There-
fore, in practical cryptanalysis, to reveal secret information, the adversaries
are able to observe and measure physical and exploitable information leaked
from a device and/or apply fault attacks by interacting with a target device.
Thus, regardless of the assumed security of the underlying cryptographic
primitive against classical cryptanalysis, implementation of cryptographic
algorithm deployed on a specific physical device may be weak against phys-
ical attacks. The trade-off between performance and security is a key factor
when designing countermeasures against such attacks, e.g. [186].

In general, there are two well established types of physical attacks: side-
channel attacks (SCA) and fault attacks (FA), which can further, depending
on how invasive they are, be divided into invasive, semi-invasive, and non-
invasive categories. The main difference between SCA and FA is whether any
interaction with the target device is required in the attack setup. While SCA
extract information by exploiting physical measurements produced during
execution, in FA, the adversaries actively tamper with the device by inducing
faults during the cryptographic computation.

Besides SCA and FA, attacks combining SCA and FA, called hybrid at-
tacks, have been proposed [96, 127]. In this kind of attack, the adversaries are
able to gain specific information leakage that only appears in a fault-injected
environment.

2.5.1 Side-Channel Attacks

First introduced in 1996 by Kocher [118], SCAs aim to extract secret infor-
mation through measurement and analysis of physical information during
the execution of a cryptographic algorithm. Informally, this is achieved by
identifying correlation between secret information and runtime behaviors.
Such correlations are typically based on the observation of power consump-
tion [185], time consumption [118], or electromagnetic radiation [81]. Many
approaches have been proposed to exploit such side-channel information, in-
cluding simple side-channel analysis (SSCA) [118], differential side-channel
analysis (DSCA) [118] and template attacks (TA) [52].

30 Chapter 2: Preliminaries

In this thesis, we focus on SSCA and DSCA. In particular, we ap-
ply correlation-collision SCA [142] on isogeny-based schemes. In such a
correlation-collision SCA, the attacker concludes from the leakage that iden-
tical (value collision) or very similar (strongly related) intermediate values
have been processed and based on that, deduces secret information. Among
other models for estimating such a correlation, the Hamming weight and the
Hamming distance model are the most widely used ones.

We refer to Section 5.3, where we apply correlation-collision SCA based
on the Hamming weight model to fully recover secret keys of SIKE and
multiple variants of CSIDH. We further refer to [130, 11, 125] for more
details on side-channel attacks.

2.5.2 Fault Attacks

First proposed in [33], FAs provide a powerful approach to recover secret
information of cryptographic primitives on physical devices. In FAs, the
adversary is assumed to have physical access to the target device during
execution. The main idea behind FAs is to disturb the execution of a running
algorithm to obtain faulty outputs or faulty behavior. On a physical device,
a fault injected can, e.g., skip instructions, lead to an unpredictable memory
state, access non-permitted location of memory, or perform a non-permitted
operation. Numerous fault-injection techniques (e.g., clock glitches, power
glitches, laser shots, and electromagnetic interference) have been proposed
and exploited to attack cryptographic schemes [37].

Among other approaches for fault attacks, safe-error attacks, introduced
in 2000 by Yen and Joye [188], provide a powerful technique to exploit fault
injection. In this kind of attacks, after injecting a fault, the output of the
computation reveals secret information based on the executed path within
the attacked algorithm. There are two types of safe-error attacks: the com-
putational (C safe-error), targeting algorithmic vulnerabilities [189] and the
memory (M safe-error), focussing on vulnerabilities within specific imple-
mentations [112].

We refer to Section 5.1, where we evaluate the impact of C safe-error
attacks on constant-time implementations of CSIDH. Further, we refer to
Section 5.2, where we present C and M safe-error attacks against SIKE and
a constant-time implementation of CSIDH.

For more details on fault attacks, we refer to [13, 11].

3
Optimizations

3.1 On hybrid SIDH schemes using Edwards
and Montgomery curve arithmetic

This chapter is for all practical purposes identical to the paper On hybrid
SIDH schemes using Edwards and Montgomery curve arithmetic [138] au-
thored jointly with Michael Meyer and Steffen Reith.

3.1.1 Introduction

In the recent years, the topic of post-quantum cryptography (PQC) has
gained a massive boost of attention and research. The threat of a possible
feasibility of building large quantum computers, that could break, e.g.,
elliptic curve cryptography like ECDH by Shor’s algorithm [171], led to a
competition by NIST for the standardization of PQC primitives [178].

One proposal for a PQC key establishment protocol is based on iso-
genies between elliptic curves. First proposed by Couveignes in 1997 [66],
followed by Rostovtsev and Stolbunov in 2006 [164], using ordinary elliptic
curves, Jao and De Feo proposed the use of supersingular elliptic curves
in 2011, in order to obtain a quantum-resistant scheme [109]. Since 2016,
when Costello, Longa and Naehrig published an efficient algorithm for the
isogeny-based key exchange [63], SIDH has gained a lot of attention and
research. The use of twisted Edwards curves has been suggested by Costello
and Hisil in [62].

In the mentioned NIST standardization competition [178], there is a
submission based on SIDH. SIKE (see [108]) is a key encapsulation mecha-
nism, that is built upon the key exchange protocol, that we describe here.
In addition, there are signature schemes (see [191], [92]) and authenticated
key exchange protocols (see [90], [129], [122]) based on SIDH. Therefore,
they all inherit the following performance discussions.

31

32 Chapter 3: Optimizations

3.1.2 Preliminaries

Isogenies are defined as non-constant morphisms between elliptic curves,
that preserve the identity elements. Separable isogenies are uniquely
determined by their kernel, and the degree of the isogeny is the cardinality
of its kernel.

In the SIDH key-exchange primitive, isogenies of large degree are computed
as a composition of small-degree isogenies. We work over a field Fp2 with a
prime of the form 2m3nf ± 1 with a small integer f . We choose an initial
supersingular elliptic curve E0 over Fp2 and want to compute a 2m- and
3n-isogeny respectively for each party, in the following called Alice and Bob.
Therefore for generating the kernels of the isogenies, whose sizes determine
the degrees of the isogenies, we choose initial points PA,QA, PB ,QB

lying in the corresponding torsion groups, namely PA,QA ∈ E0[2
m] and

PB ,QB ∈ E0[3
n].

In the following, we describe Alice’s key generation, while Bob’s key
generation works in an analogous way.

Alice chooses a random integer mA and computes R0 = PA + [mA]QA

as generator of the kernel for computing her 2m-isogeny. However, since
computing large-degree isogenies is expensive, m isogenies of degree 2 are
computed. Therefore, we compute [2m−1]R0 as generator of the kernel of
the 2-isogeny φ0, that maps to E1 = E0/⟨[2

m−1]R0⟩. φ0 can be computed
by Vélu’s formulae [184]. In addition, R1 = φ0(R0) is computed. The next
step is to compute [2m−2]R1, φ1, E2 = E1/⟨[2

m−2]R1⟩, and R2 = φ1(R1).
Following this pattern, we obtain a 2m-isogeny φA as composition of m
isogenies of degree 2, that maps from E0 to a curve EA.
The public key then consists of EA (in terms of the curve parameters),
φA(PB), and φA(QB). Alice receives Bob’s computed public key, which
contains the curve EB , φB(PA), and φB(QA).
Following the same strategy again, Alice then computes RBA =
φB(PA) + [mA]φB(QA) and uses this point as generator for comput-
ing the 2m-isogeny φBA, again as a composition of 2-isogenies, that maps
from EB to EBA. Similarly, Bob obtains a 3n-isogeny φAB , that maps from
EA to EAB . The shared secret can then be computed as j-invariant of the
resulting curves, since the j-invariants of EAB and EBA are equal.

Instead of a field Fp2 with a prime of the form 2m3nf ± 1, any other
prime of the form ℓma ℓnb f ± 1 with ℓa, ℓb coprime can be used. However, the
above mentioned choice seems to be the most efficient for SIDH. In [63]
4-isogenies are used instead of 2-isogenies for reasons of efficiency.

Furthermore, we note that there are better strategies to obtain isoge-

3.1 On hybrid SIDH schemes 33

nies of degree ℓm than the described multiplication-based approach. See
[109] for a detailed analysis of optimal strategies.

3.1.3 Montgomery curve arithmetic

In their implementation of SIDH in [63], available at [65], Costello, Longa
and Naehrig use elliptic curves in Montgomery form. They are given by an
equation over a field K of the form

Ea,b ∶ by
2 = x3 + ax2 + x.

To avoid inversions during point additions and doublings, projective coor-
dinates can be used. Instead of the affine coordinates (x, y) ∈ Ea,b, we use
(X ∶ Y ∶ Z) ∈ P2 with x = X/Z and y = Y /Z, and OE = (0 ∶ 1 ∶ 0) as point
at infinity. If we embed this into P1 by dropping the Y -coordinate, we can
use the efficient arithmetic given by Montgomery in [140]. Given a point
Pn = (Xn ∶ Zn), we can compute [2]Pn = (X2n ∶ Z2n) by

4XnZn = (Xn +Zn)
2 − (Xn −Zn)

2,

X2n = (Xn +Zn)
2(Xn −Zn)

2,

Z2n = (4XnZn)((Xn −Zn)
2 + ((A + 2)/4)(4XnZn)).

Given another point Pm = (Xm ∶ Zm) and the difference Pm−n = Pm − Pn =
(Xm−n ∶ Zm−n), we can compute the sum Pm+n = Pm + Pn = (Xm+n ∶ Zm+n)
by

Xm+n = Zm−n((Xm −Zm)(Xn +Zn) + (Xm +Zm)(Xn −Zn))
2,

Zm+n =Xm−n((Xm −Zm)(Xn +Zn) − (Xm +Zm)(Xn −Zn))
2.

Thus a differential addition can be done using 4M + 2S, or 3M + 2S if
Pm−n is normalized, while a doubling needs 2M + 2S + 1C. As usual, we
denote field multiplications by M, field squarings by S, and multiplications
by a constant using C. In our representation of computational costs, we
ignore field additions and subtractions, since their costs are negligible in
comparison to multiplications and squarings. We note that the formulae
above lose information, since we do not distinguish between the possible
corresponding coordinates Y and −Y . However, in the case of SIDH we do
not need this information and it suffices to work entirely with (X ∶ Z) ∈ P1.

In the SIDH implementation in [63], not only the point coordinates,
but also the curve parameters are projectivized. Instead of a Montgomery
curve of the form given above, we work with an equation of the form

E(A∶B∶C) ∶ By2 = Cx3 +Ax2 +Cx,

34 Chapter 3: Optimizations

where (A ∶ B ∶ C) ∈ P2(K), such that a = A/C and b = B/C for the corre-
sponding curve Ea,b. The j-invariants of the curves are then given by

j(Ea,b) =
256(a2 − 3)3

a2 − 4
and j(E(A∶B∶C)) =

256(A2 − 3C2)3

C4(A2 − 4C2)
.

From these formulae we see that the j-invariant does not depend on b or
B, respectively. Therefore, it suffices to work with (A ∶ C) ∈ P1(K) in the
projective model. Furthermore, neither the Montgomery arithmetic given
above, nor the isogeny computations during SIDH require the coefficients
b or B, respectively. However, we note that formulae that make use of the
parameter a, like the Montgomery doubling above, must be trivially modified
by substituting a = A/C in order to work on E(A∶B∶C), as described in [63].
In this case a doubling costs 2M + 2S + 2C.

3.1.4 Twisted Edwards curve arithmetic

When it comes to elliptic-curve computations, Edwards curves are often the
model of choice for fast arithmetic. However, in the context of SIDH, we
have to compare the Edwards arithmetic formulae with the efficient XZ-
only Montgomery arithmetic. On the other hand, most of the discussions
about fast Edwards arithmetic focus on full-coordinate models.

Twisted Edwards curves over K are given by equations of the form

EE,a,d ∶ aX
2 + Y 2 = 1 + dX2Y 2,

with a, d ≠ 0, d ≠ 1, and a ≠ d. For a = 1, the twisted Edwards curve
EE,1,d = EE,d is called Edwards curve. As seen in the Montgomery case,
projective coordinates can be used in order to avoid inversions during
additions and doublings. However, in the Edwards case there are three
more models, as described in [18].

Similarly to the Montgomery case above, we can use projective coor-
dinates (X ∶ Y ∶ Z) ∈ P2 with x = X/Z and y = Y /Z for the corresponding
affine point (x, y) on Ea,d. The projective curve equation is given by
aX2Z2 + Y 2Z2 = Z4 + dX2Y 2. A projective point P = (X1 ∶ Y1 ∶ Z1) can be
doubled using

B = (X1 + Y1)
2; C =X2

1 ; D = Y 2
1 ; E = aC;

F = E +D; H = Z2
1 ; J = F − 2H;

X3 = (B −C −D) ⋅ J ; Y3 = F ⋅ (E −D); Z3 = F ⋅ J,

where [2]P = (X3 ∶ Y3 ∶ Z3). Therefore, a doubling needs 3M + 4S + 1C (see
[17]).

3.1 On hybrid SIDH schemes 35

Another model for twisted Edwards curves is given by the extended
curve equation aX2 + Y 2 = Z2 + dT 2 with XY = ZT . Points on this curve
are represented by (X ∶ Y ∶ Z ∶ T) ∈ P3, where the corresponding affine point
(x, y) is represented by (x ∶ y ∶ 1 ∶ xy). According to [103], there is a fast
way to add two points (X1 ∶ Y1 ∶ Z1 ∶ T1) and (X2 ∶ Y2 ∶ Z2 ∶ T2) by

A =X1 ⋅X2; B = Y1 ⋅ Y2; C = Z1 ⋅ T2; D = T1 ⋅Z2; E =D +C;

F = (X1 − Y1) ⋅ (X2 + Y2) +B −A; G = B + aA; H =D −C;

X3 = E ⋅ F ; Y3 = G ⋅H; Z3 = F ⋅G; T3 = E ⋅H,

where (X1 ∶ Y1 ∶ Z1 ∶ T1)+ (X2 ∶ Y2 ∶ Z2 ∶ T2) = (X3 ∶ Y3 ∶ Z3 ∶ T3). The cost of
this computation is 9M + 1C.

Two more models are given by the inverted curve aY 2Z2 + X2Z2 =
X2Y 2 + dZ4 with points (X ∶ Y ∶ Z) ∈ P2 and the completed curve
aX2T 2 +Y 2Z2 = Z2T 2 +dX2Y 2 with points ((X ∶ Z), (Y ∶ T)) ∈ P1 ×P1 (see
[18]). However, for these models there are no known doubling or addition
formulae, that are more efficient than the ones mentioned above.

Similar to the XZ-only Montgomery curve arithmetic, Castryck, Gal-
braith, and Farashahi introduced a Y Z-only doubling formula for Edwards
curves in [48]. In the same way as presented in the mentioned paper, we
can derive such a formula for twisted Edwards curves. For an affine point
P = (x, y), the twisted Edwards doubling formula is given by

[2]P = (x2, y2) = (
2xy

1 + dx2y2
,
y2 − ax2

1 − dx2y2
) .

For the y-coordinate we have

y2 − ax2

1 − dx2y2
=
y2(a − dy2) − a(1 − y2)

(a − dy2) − dy2(1 − y2)
=
−dy4 + 2ay2 − a

dy4 − 2dy2 + a
,

where we make use of the curve equation ax2 + y2 = 1 + dx2y2. Expressing
this in projective coordinates with P = (X ∶ Y ∶ Z) and [2]P = (X2 ∶ Y2 ∶ Z2),
we obtain

Y2 = −dY
4 + 2aY 2Z2 − aZ4,

Z2 = dY
4 − 2dY 2Z2 + aZ4.

This can be computed using 5S+4C. Equivalent doubling formulae are also
given in [134] with a cost of 5S + 2C, since they use a single precomputed
coefficient α = a/d. In the case of an Edwards curve we have a = 1, so
the cost decreases to 5S + 2C. In [48] it is also pointed out that if ad is a
square and

√
ad is known, a doubling can be modified to cost 1M+3S+6C.

36 Chapter 3: Optimizations

Similarly, in the Edwards case, if d is a square and
√
d is known, a doubling

takes 1M + 3S + 3C.

A formula for Y Z-only differential addition of twisted Edwards curve points
of odd order is derived in [134]. Given projective points [n]P = (Yn ∶ Zn)
and [n + 1]P = (Yn+1 ∶ Zn+1), and the affine y-coordinate of P = (x, y), the
point [2n + 1]P = (Y2n+1 ∶ Z2n+1) can be computed with 4M + 3S. If P is
given projectively as P = (Y ∶ Z), we can modify the formulae to

Y2n+1 = −Y ((YnZn+1)
2 + (Yn+1Zn)

2) + 2ZYnZnYn+1Zn+1,

Z2n+1 = Z((YnZn+1)
2 + (Yn+1Zn)

2) − 2Y YnZnYn+1Zn+1,

which increases the cost to 6M+ 3S. However, we will show in Section 3.1.6
that this can be optimized to give the exact same formula as the Mont-
gomery curve differential addition from Section 3.1.3. Therefore it is obvious
that the restriction to points of odd order is not required.

Other twisted Edwards differential addition formulae were derived in
[82]. They make use of w-coordinates, that are defined as w(x, y) = d(xy)2

for affine points P = (x, y). Therefore, this method is not available in the
context of SIDH, and we don’t give more details on this here.

As described in [17], the j-invariant of a twisted Edwards curve is
given by

16(a2 + 14ad + d2)3

ad(a − d)4
,

which shows that in this case, we need both parameters a and d for the
computation of the j-invariant.

3.1.5 Switching between Montgomery and twisted Ed-
wards curves

If we want to combine some of the ideas for Montgomery and twisted Ed-
wards curves from above, we need an efficient way to switch between these
two models. We slightly change our notation here in the following way: For
a Montgomery curve over a field K with A ∈ K/{−2,2} and B ∈ K/{0}, we
write

EM,A,B ∶ Bv2 = u3 +Au2 + u.

For a twisted Edwards curve with distinct a, d ∈K/{0} and d ≠ 1, we write

EE,a,d ∶ ax
2 + y2 = 1 + dx2y2.

Then it is shown in [17] that EE,a,d is birationally equivalent to EM,A,B ,
where

A =
2(a + d)

a − d
and B =

4

a − d
,

3.1 On hybrid SIDH schemes 37

and a birational equivalence is given by the map

(x, y)↦ (u, v) = (
1 + y

1 − y
,

1 + y

(1 − y)x
)

and its inverse

(u, v)↦ (x, y) = (
u

v
,
u − 1

u + 1
) .

Note that these maps are not defined everywhere. For a way to handle
exceptional points, we refer to [17].

However, if we use projective coordinates, particularly the XZ-only
Montgomery arithmetic and the Y Z-only twisted Edwards arithmetic,
switching between these models is very simple. As seen in [48], a Mont-
gomery point (XM ∶ ZM) can be transformed to the corresponding Edwards
Y Z-coordinates (YE ∶ ZE) by the map

(XM ∶ ZM)↦ (YE ∶ ZE) = (XM −ZM ∶XM +ZM).

A twisted Edwards point (YE ∶ ZE) can be transformed to the corresponding
Montgomery XZ-coordinates (XM ∶ ZM) by the map

(YE ∶ ZE)↦ (XM ∶ ZM) = (YE +ZE ∶ ZE − YE).

Therefore, switching between these two models costs only two additions.

3.1.6 Elliptic-curve arithmetic in SIDH

There are different stages of SIDH, where elliptic curve arithmetic takes
place. In [63], all the arithmetic is done in XZ-only Montgomery coordi-
nates.

3.1.6.1 Stage 1

In the key generation, Alice and Bob compute their respective secret kernel
generator Pi + [mi]Qi for some initially chosen points Pi and Qi, and a
random integer mi. Thus, the starting curve parameters and full coordinates
of Pi and Qi are known.

3.1.6.2 Stage 2

During the computation of the isogenies, Alice and Bob have to compute sev-
eral doublings or triplings, respectively. Since we work on different curves
after each computed isogeny, the curve parameters are not fixed here. Fur-
thermore, the points Ri that have to be doubled or tripled, are given in
Montgomery XZ-coordinates.

38 Chapter 3: Optimizations

3.1.6.3 Stage 3

In the computation of the shared secret, Alice and Bob again have to com-
pute P̂i + [mi]Q̂i for their secret integer mi and some received points P̂i and
Q̂i from the public key. Here, only the normalized curve parameter A and
the normalized X-coordinates of P̂i, Q̂i, and P̂i − Q̂i are known.

3.1.7 Twisted Edwards curve arithmetic in SIDH

In this section, we analyze, how twisted Edwards curve arithmetic can be
used in the different stages of SIDH.

Stage 1

The situation of Alice and Bob is equal here, except for the different initial
points provided and the probably different random numbers. Therefore,
we don’t have to distinguish between the two parties here. In the imple-
mentation from [63], we start with the Montgomery curve y2 = x3 + x and
the computation of [m]Q uses a Montgomery ladder. Per bit of the integer
m, one doubling and one addition are performed in Montgomery XZ-only
arithmetic. Since the computation entirely takes place in the basefield
Fp and because of the choice of the curve parameters, the cost of this is
5M + 4S per bit of m.

As seen above, and mentioned in [48], we can replace each doubling
of a point Q by a doubling in Edwards coordinates:

1. Compute the corresponding Edwards point QE ,
2. Compute [2]QE by a twisted Edwards doubling,
3. Switch back to Montgomery coordinates to obtain [2]Q.

However, in the context of SIDH, this can be optimized as follows: Since
the Montgomery parameters of the starting curve are A = 0 and B = 1, the
corresponding Edwards parameters are a = 2 and d = −2. Therefore, all
multiplications by curve parameters can be replaced by additions. Plugging
the parameters into the doubling formulae, we obtain

Y2 = 2Y 4 + 4Y 2Z2 − 2Z4,

Z2 = −2Y 4 + 4Y 2Z2 + 2Z4.

Instead of computing the Edwards doubling and transforming back to Mont-
gomery coordinates afterwards by computing Y2 + Z2 and Z2 − Y2, we can
combine these steps, since

Y2 +Z2 = 2Y 2Z2,

Z2 − Y2 = Z
4 − Y 4,

3.1 On hybrid SIDH schemes 39

so we do not have to compute Y2 and Z2 explicitly. Therefore, we save a few
additions. Furthermore, we get the transformation to Edwards coordinates
for free, since in each ladder step, a Montgomery differential addition is
performed, during which the required values occur. In total, the Edwards
doubling costs 5S here, and the combined Montgomery differential addi-
tion and Edwards doubling, and hence one step in the ladder, costs 3M+7S.

A different approach to compute a multiple [m]Q of a point by Ed-
wards arithmetic is given in the context of the elliptic-curve method
for factorization in [18], where multiples of points are computed in full
coordinates. The fastest way described there is the combination of the
doubling in projective coordinates and the addition in extended coordinates
that are stated above. Bernstein and Lange use ’signed sliding fractional
window’ addition-subtraction chains, which are defined in [22], that define
the sequence of doublings and additions for a fast computation of [m]Q.
Using such a chain, only one doubling and ε additions are required per bit
of m, where ε converges to 0 for increasing bitlength of m. For Alice, the
random integer m has a maximal bitlength of 372. We see from [18], that
a bitlength in this magnitude requires approximately 0.99 doublings and
0.19 additions per bit. Thus, calculating with a bitlength of 372, we end up
with roughly 1740M+1473S in total for the computation of [m]Q, ignoring
further computations for switching between the coordinate models. In
comparison, the ladder from [63] needs 5M + 4S per bit of m, and therefore
a total of 1860M + 1488S. However, since m is randomly chosen each time,
we always have to compute a fast chain, and in addition, more storage is
required for the chain and the saved intermediate values.

Stage 2

In this stage of the algorithm, the situation of Alice and Bob is slightly
different, since they have to compute doublings or triplings, respectively.
We first focus on Alice’s computations, where doublings are needed. The
first thing to note here is that in every step, we work on a new curve with
different parameters, and therefore a multiplication by a curve coefficient
costs as much as a general field multiplication M, since we cannot expect
the parameters to stay small. For a Y Z- only Edwards doubling we
thus need 4M + 5S. A doubling in full projective coordinates would be
slightly cheaper, using 4M+ 4S, but the X-coordinates are not known here.
Although it is clear, that compared to the Montgomery arithmetic from
[63], the computation is more expensive this way, we show how it can be done.

For using these formulae, we first have to recover the corresponding
Edwards parameters, in the following denoted by aE and dE . Since in the
implementation of [63], the curve parameters are in projective form (A ∶ C),

40 Chapter 3: Optimizations

where the usual Montgomery parameter a = A/C, and b resp. B is discarded
completely, it is not possible to use the formulae above directly to recover
the Edwards parameters. However, we can rewrite them as

A

C
=

2(aE + dE)

aE − dE
and

B

C
=

4

aE − dE
.

We can then fix B = 1 and thus obtain

aE = A + 2C and dE = A − 2C.

Therefore, all the doublings in this section of the algorithm can be done
using Edwards coordinates in the following way:

1. Compute the corresponding Edwards point (cost: 2 additions)
2. Recover the Edwards parameters aE and dE (cost: 3 addi-

tions)
3. Compute all the required doublings (cost: 4M + 5S each)
4. Transform the resulting point back into Montgomery coordi-

nates (cost: 2 additions)

On Bob’s side, we have to compute point triplings. There are various ways
to use Edwards curve arithmetic from section 4. We can simply perform an
Edwards doubling followed by an Edwards differential addition to triple a
point. Without further optimization, this takes 10M+8S. Now assume that
we want to switch to Montgomery coordinates after the computation of the
tripling. Given P = (Y ∶ Z) and [2]P = (Y2 ∶ Z2) in Edwards coordinates,
we can compute [3]P = (Y3 ∶ Z3) by the formulae from section 4:

Y3 = −Y ((Y Z2)
2 + (Y2Z)

2) + 2Y Z2Y2Z2,

Z3 = Z((Y Z2)
2 + (Y2Z)

2) − 2Y 2ZY2Z2.

For the change to Montgomery coordinates, we have to compute

Y3 +Z3 = (Z − Y)((Y Z2)
2 + (Y2Z)

2) + 2(Z − Y)(Y ZY2Z2)

= (Z − Y)(Y Z2 + Y2Z)
2

for the Montgomery X-coordinate, and

Z3 − Y3 = (Z + Y)((Y Z2)
2 + (Y2Z)

2) − 2(Z + Y)(Y ZY2Z2)

= (Z + Y)(Y Z2 − Y2Z)
2

for the Montgomery Z-coordinate. This looks very similar to the Mont-
gomery differential addition formulae. If we now interchange the Edwards
coordinates with their corresponding Montgomery coordinates, we end up
with the exact same formulae from Section 3.1.3. Therefore the twisted

3.1 On hybrid SIDH schemes 41

Edwards differential addition from [134] is basically a less efficient represen-
tation of the Montgomery formulae, and thus we can restrict to the use of
the Montgomery formulae here.

We can now combine the Edwards doubling with the Montgomery
differential addition, leading to a cost of 8M+ 7S per tripling. This is again
more expensive than the tripling from [63], which costs 8M + 4S. In [62]
and [83], the cost was further reduced to 7M + 5S.

Stage 3

Similar to stage 1, we want to compute P + [m]Q here. However the
circumstances are different here. We are given the public keys, namely
the normalized X-coordinates of P , Q, and P − Q, and the normalized
Montgomery curve parameter A, which is calculated from these values.
In [63], the three-point-ladder from [109] is used, which computes one
differential addition and one combined doubling and differential addition
per step.
For the deployment of Edwards curves, we can again replace the doubling
of the combined step by an Edwards doubling. However, in contrast to
stage 1, we cannot expect the coefficients aE = A + 2 and dE = A − 2 to
be small, so we have to count them as full multiplications here as well.
This leads to an extra cost of 4M compared to the computation in stage
1, and thus a cost of 7M + 7S per combined doubling and addition. A
complete ladder step, which includes one more differential addition, costs
10M+9S in this case. In comparison, a ladder step in [63] costs only 9M+6S.

As in stage 1, another option would be to compute P + [m]Q in full
Edwards projective and extended coordinates. However, we would need to
recover the Y -coordinates of P and Q for that.

3.1.8 Implementation results

We implemented SIDH with an optimal strategy based on [63] in Python
2.7. This was used as a reference for performance comparisons to the
described Edwards arithmetic. The Python scripts can be found on
https://github.com/sopmacF/hybrid-SIDH. In the Edwards script, we
implemented the Stages 1 and 2 from above, namely in stage 1 a basefield
ladder, that uses a combination of an Edwards doubling and a Montgomery
differential addition, and in stage 2 Edwards doublings and triplings as
described. In total, the computational effort increased by roughly 10% with
all these changes, including an adjusted optimal strategy.

We further implemented our changes in the C implementation of Costello,
Longa, and Naehrig [63], which is available at [65]. In Table 3.1, we give

https://github.com/sopmacF/hybrid-SIDH

42 Chapter 3: Optimizations

CLN [63] This work

Doublings 7,305 10,073

Triplings 14,503 17,640

Table 3.1: Performance comparison of doublings and triplings. All timings
are given in clock cycles and were measured on a 2.5GHz Intel Core i7-6500
Skylake processor running Ubuntu 16.04 LTS.

Protocol Phase CLN [63] This work

Alice’s Key Generation 30.2 33.7

Bob’s Key Generation 34.1 36.8

Alice’s Shared Secret 28.8 32.2

Bob’s Shared Secret 32.8 35.5

Table 3.2: Performance comparison of the SIDH protocol phases. The run-
ning times are given in 106 clock cycles. The setup is the same as in Table 1.

a comparison of our Edwards-based doubling and tripling formulae from
section 7.2 and the ones from [65].
Table 3.2 gives a comparison of the total cost of the key exchange phases for
the respectively used formulae. Alice and Bob both use the basefield ladder
from section 7.1 in our implementation, which is more efficient than the one
from [63], whenever the cost of S is less than 2

3
M.

As expected, our Edwards version is roughly 10% slower, like in our
Python implementation. Our edited version of the implementation of
[63], which also contains adjusted optimal strategies, is available at
https://github.com/sopmacF/hybrid-SIDH.

3.1.9 Conclusion and future work

As a result we can suppose, that a hybrid SIDH scheme, which uses Ed-
wards arithmetic whenever possible, does not yield an immediate speedup
for SIDH. However, since the computations are almost as efficient as in the
state-of-the-art implementation [63], it is still possible, that a full Edwards
version of SIDH with efficient Edwards isogeny formulae can improve the
performance of SIDH. In this case, if Y Z-only arithmetic is used, it may
be even advantageous to switch to Montgomery curves in some cases, e.g.,
to speed up doublings. However, we leave this question open for further
investigation. In [10], the authors presented an implementation of SIDH for
complete Edwards curves providing security benefits against side-channel
attacks.

https://github.com/sopmacF/hybrid-SIDH

4
Constant-time Implementation

4.1 On Lions and Elligators: An efficient
constant-time implementation of CSIDH

This chapter is for all practical purposes identical to the paper On Lions
and Elligators: An efficient constant-time implementation of CSIDH [136]
authored jointly with Michael Meyer and Steffen Reith, which was published
at PQCrypto 2019.

4.1.1 Introduction

Isogeny-based cryptography is the most juvenile family of the current pro-
posals for post-quantum cryptography. The first cryptosystem based on the
hardness of finding an explicit isogeny between two given isogenous elliptic
curves over a finite field was proposed in 1997 by Couveignes [66], eventually
independently rediscovered by Rostovtsev and Stolbunov [164] in 2004, and
therefore typically called CRS. Childs, Jao, and Soukharev [57] showed in
2010 that CRS can be broken using a subexponential quantum algorithm by
solving an abelian hidden shift problem. To avoid this attack, Jao and De Feo
[109] invented the new isogeny-based scheme SIDH (supersingular isogeny
Diffie–Hellman) that works with supersingular curves over Fp2 . SIKE [108]
is a post-quantum key encapsulation mechanisms based on SIDH, which was
submitted to the NIST post-quantum cryptography competition [178].

De Feo, Kieffer and Smith optimized CRS in 2018 [72]. Their ideas
led to the development of CSIDH by Castryck, Lange, Martindale, Panny,
and Renes [49], who adapted the CRS scheme to supersingular curves and
isogenies defined over a prime field Fp. They implemented the key exchange
as a proof-of-concept, which is efficient, but does not run in constant time,
and can therefore leak information about private keys. We note that building
an efficient constant-time implementation of CSIDH is not as straightforward
as in SIDH, where, speaking of running times, only one Montgomery ladder
computation depends on the private key (see [63]).

43

44 Chapter 4: Constant-time Implementation

In this chapter we present a constant-time implementation of CSIDH
with many practical optimizations, requiring only a small overhead of factor
3.03 compared to the fastest variable-time implementation from [137].

4.1.2 CSIDH

We only cover the algorithmic aspects of CSIDH here, and refer to [49] for
the mathematical background and a more detailed description.

Algorithm 2: Evaluating the class group action.

Input : a ∈ Fp such that Ea ∶ y
2 = x3 + ax2 + x is supersingular, and

a list of integers (e1, ..., en) with ei ∈ {−B, ...,B} for all
i ≤ n.

Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 while some ei ≠ 0 do
2 Sample a random x ∈ Fp.
3 Set s← +1 if x3 + ax2 + x is a square in Fp, else s← −1.
4 Let S = {i ∣ sign(ei) = s}.
5 if S = ∅ then
6 Go to line 2.

7 P = (x ∶ 1), k ←∏i∈S ℓi, P ← [(p + 1)/k]P . // p = 4 ⋅ ℓ1 ⋅ ... ⋅ ℓn − 1

8 foreach i ∈ S do
9 K ← [k/ℓi]P .

10 if K ≠∞ then
11 Compute a degree-ℓi isogeny φ ∶ Ea → Ea′ with

ker(φ) = ⟨K⟩.
12 a← a′, P ← φ(P), k ← k/ℓi, ei ← ei − s.

We first choose a prime of the form p = 4 ⋅ ℓ1 ⋅ ... ⋅ ℓn − 1, where the ℓi are
small distinct odd primes. We work with supersingular curves over Fp, which
guarantees the existence of points of the orders ℓi, that enable us to compute
ℓi-isogenies from kernel generator points by Vélu-type formulas [184].

A private key consists of a tuple (e1, ..., en), where the ei are integers sam-
pled from an interval [−B,B]. The absolute value ∣ei∣ specifies how many
ℓi-isogenies have to be computed, and the sign of ei determines, whether
points on the current curve or on its twist have to be used as kernel gen-
erators. One can represent this graphically: Over Fp, the supersingular
ℓi-isogeny graph consists of distinct cycles. Therefore, we have to walk ∣ei∣
steps through the cycle for ℓi, and the sign of ei tells us the direction.

4.1 Efficient constant-time implementation of CSIDH 45

Since this class group action is commutative, it allows a basic Diffie–
Hellman-type key exchange: Starting from a supersingular curve E0, Alice
and Bob choose a private key as described above, and compute their public
key curves EA resp. EB via isogenies, as described in Algorithm 2. Then
Alice repeats her computations, this time starting at the curve EB , and vice
versa. Both parties then arrive at the same curve EAB , which represents
their shared secret. Furthermore, public keys can be verified efficiently in
CSIDH (see [49]). Therefore, a static-static key-exchange is possible.

However, the quantum security is still an open problem. For our im-
plementation we use CSIDH-512, the parameter set from [49], that is
conjectured to satisfy NIST security level 1. In the light of the subexponen-
tial quantum attack on CRS and CSIDH [57], more analysis on CSIDH has
been done in [30, 36, 23].

4.1.3 Leakage scenarios

It is clear and already mentioned in [49] that the proof-of-concept implemen-
tation of CSIDH is not side-channel resistant. In this chapter we focus on
three scenarios that can leak information on the private key. Note that the
second scenario features a stronger attacker. Further, there will of course be
many more scenarios for side-channel attacks.

4.1.3.1 Timing leakage.

As the private key in CSIDH specifies how many isogenies of each degree
have to be computed, it is obvious that this (up to additional effort for
point multiplications due to the random choice of points) determines the
running time of the algorithm. As stated in [137], the worst-case running
time occurs for the private key (5,5, ...,5), and takes more than 3 times as
much as in the average case. The other extreme is the private key (0,0, ...,0),
which would require no computations at all. However, in a timing-attack-
protected implementation, the running time should be independent from the
private key.

4.1.3.2 Power analysis.

Instead of focusing on the running time, we now assume that an attacker can
measure the power consumption of the algorithm. We further assume that
from the measurement, the attacker can determine blocks which represent
the two main primitives in CSIDH, namely point multiplication and isogeny
computation, and can separate these from each other. Now assume that
the attacker can separate the loop iterations from each other. Then the
attacker can determine which private-key elements share the same sign from
the isogeny blocks that are performed in the same loop, since they have

46 Chapter 4: Constant-time Implementation

variable running time based on the isogeny degree. This significantly reduces
the possible key space and therefore also the complexity of finding the correct
key.

4.1.3.3 Cache timing attacks.

In general, data flow from the secret key to branch conditions and array
indices must be avoided in order to achieve protection against cache timing
attacks [20]. Our implementation follows these guidelines to avoid vulnera-
bilities against the respective possible attacks.

4.1.4 Mitigating Leakage

In this section we give some ideas on how to fix these possible leakages in
an implementation of CSIDH. We outline the most important ideas here,
and give details about how to implement them efficiently in CSIDH-512 in
Section 4.1.5.

4.1.4.1 Dummy isogenies.

First, it seems obvious that one should compute a constant number of iso-
genies of each degree ℓi, and only use the results of those required by the
private key, in order to obtain a constant running time. However, in this
case additional multiplications are required, if normal isogenies and unused
isogenies are computed in the same loop12. We adapt the idea of using
dummy isogenies from [137] for that cause. There it is proposed to design
dummy isogenies, which instead of updating the curve parameters and eval-
uating the curve point P , compute [ℓi]P in the degree-ℓi dummy isogeny.
Since the isogeny algorithm computes [ℓi−1

2
]K for the kernel generator K,

one can replace K by P there, and perform two more differential additions
to compute [ℓi]P . The curve parameters remain unchanged.

In consequence, a dummy isogeny simply performs a scalar multiplica-
tion. Therefore, the output point [ℓi]P then has order not divisible by ℓi,
which is important for using this point to compute correct kernel genera-
tors in following iterations. Further, one can design the isogeny and dummy
isogeny algorithms for a given degree ℓi such that they perform the same
number and sequence of operations with only minor computational over-
head compared to the isogenies from [137]. This is important to make it
hard for side-channel attackers to distinguish between those two cases, since
conditional branching can be avoided with rather small overhead.

12This is required, since otherwise, an attacker in the second leakage scenario can de-
termine the private key easily.

4.1 Efficient constant-time implementation of CSIDH 47

4.1.4.2 Balanced vs. unbalanced private keys.

Using dummy isogenies to spend a fixed time on isogeny computations is
not enough for a constant-time implementation, however. Another problem
lies in the scalar multiplications in line 7 and line 9 of Algorithm 2. We
use an observation from [137] to illustrate this. They consider the private
keys (5,5,5, ...) and (5,−5,5,−5, ...) and observe that for the first key, the
running time is 50% higher than for the second key. The reason for this is
that in the first case in order to compute one isogeny of each degree, the
multiplication in line 7 is only a multiplication by 4, and the multiplication
in line 9 has a factor of bitlength 509 in the first iteration, 500 in the second
iteration, and so on.

For the second key, we have to perform one loop through the odd i and
one through the even i in order two compute one isogeny of each degree ℓi.
Therefore, the multiplications in line 7 are by 254 resp. 259 bit factors, while
the bitlengths of the factors in the multiplications in line 9 are 252, 244,...,
resp. 257, 248, and so on (see Figure 1). In total, adding up the bitlengths
of all factors, we can measure the cost of all point multiplications for the
computation of one isogeny per degree, where we assume that the condition
in line 10 of Algorithm 1 never fails, since one Montgomery ladder step is
performed per bit. For the first key, we end up with 16813 bits, while for
the second key we only have 9066 bits.

Figure 4.1: Bitlengths of factors for computing one isogeny per degree for
the keys (5,5, ...,5) (left) and (5,−5,5,−5, ...) (right).

This can be generalized to any private key: The more the key elements (or
the products of the respective ℓi) are unbalanced, i.e., many of them share
the same sign, the more the computational effort grows, compared to the
perfectly balanced case from above. This behavior depends on the private
key and can therefore leak information. Hence, it is clear that we have to
prevent this in order to achieve a constant-time implementation.

One way to achieve this is to use constant-time Montgomery ladders that
always run to the maximum bitlength, no matter how large the respective

48 Chapter 4: Constant-time Implementation

factor is. However, this would lead to a massive increase in running time.
Another possibility for handling this is to only choose key elements of a
fixed sign. Then we have to adjust the interval from which we sample the
integer key elements, e.g. from [−5,5] to [0,10] in CSIDH-512. This however
doubles the computational effort for isogenies (combined normal and dummy
isogenies). We will return to this idea later.

4.1.4.3 Determining the sign distribution.

In our second leakage scenario, an attacker might determine the sign dis-
tribution of the key elements by identifying blocks of isogeny resp. dummy
isogeny computations. One way of mitigating this attack would be to let each
degree-ℓi isogeny run as long as a ℓmax-isogeny, where ℓmax is the largest ℓi.
As used in [23], this is possible because of the Matryoshka-doll structure of
the isogeny algorithms. This would allow an attacker in the second leakage
scenario to only determine the number of positive resp. negative elements,
but not their distribution, at the cost of a large increase of computational
effort. We can also again restrict to the case that we only choose nonnega-
tive (resp. only nonpositive) key elements. Then there is no risk of leaking
information about the sign distribution of the elements, since in this setting
the attacker knows this beforehand, at the cost of twice as many isogeny
computations.

4.1.4.4 Limitation to nonnegative key elements.

Since this choice eliminates both of the aforementioned possible leakages,
we use the mentioned different interval to sample private key elements
from. In CSIDH-512, this means using the interval [0,10] instead of
[−5,5]. One might ask if this affects the security properties of CSIDH.
As before, there are 1174 different tuples to choose from in CSIDH-512.
In [49], the authors argue that there are multiple vectors (e1, e2, ..., en),
which represent the same ideal class, meaning that the respective keys
are equivalent. However, they assume by heuristic arguments that the
number of short representations per ideal class is small, i.e. the 1174

different keys (e1, e2, ..., en), where all ei are sampled from the interval
[−5,5], represent not much less than 1174 ideal classes. If we now have
two equivalent keys e ≠ f sampled from [−5,5], then we have a collision
for our shifted interval as well, since shifting all elements of e and f by +5
results in equivalent keys e′ ≠ f ′ with elements in [0,10], and vice versa.
Therefore, our shifted version is equivalent to CSIDH-512 as defined in [49]13.

13One could also think of using the starting curve E′, which is the result of applying
the key (5,5, ...,5) to the curve E0. Then for a class group action evaluation using key
elements from [−5,5] and the starting curve E′ is equivalent to using key elements from
[0,10] and the starting curve E0.

4.1 Efficient constant-time implementation of CSIDH 49

In the following sections we focus on optimized implementations, us-
ing the mentioned countermeasures against attacks, i.e., sampling key
elements from the interval [0,10] and using dummy isogenies.

4.1.5 Efficient Implementation

4.1.5.1 Straightforward Implementation

First, we describe the straightforward implementation of the evaluation of
the class group action in CSIDH-512 with the choices from above, before ap-
plying various optimizations. We briefly go through the implementation
aspects of the main primitives, i.e., scalar multiplications, isogenies and
dummy isogenies, and explain why this algorithm runs in constant time,
and does not leak information about the private key.

Algorithm 3: Constant-time evaluation of the class group action
in CSIDH-512.

Input : a ∈ Fp such that Ea ∶ y
2 = x3 + ax2 + x is supersingular, and

a list of integers (e1, ..., en) with ei ∈ {0,1, ..,10} for all
i ≤ n.

Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 Initialize k = 4, e = (e1, ..., en) and f = (f1, ..., fn), where fi = 10 − ei.
2 while some ei ≠ 0 or fi ≠ 0 do
3 Sample random values x ∈ Fp until we have some x where

x3 + ax2 + x is a square in Fp.
4 Set P = (x ∶ 1), P ← [k]P , S = {i ∣ ei ≠ 0 or fi ≠ 0}.
5 foreach i ∈ S do
6 Let m =∏j∈S,j>i ℓj .
7 Set K ← [m]P.
8 if K ≠∞ then
9 if ei ≠ 0 then

10 Compute a degree-ℓi isogeny φ ∶ Ea → Ea′ with
ker(φ) = ⟨K⟩.

11 a← a′, P ← φ(P), ei ← ei − 1.

12 else
13 Compute a degree-ℓi dummy isogeny:
14 a← a, P ← [ℓi]P , fi ← fi − 1.

15 if ei = 0 and fi = 0 then
16 Set k ← k ⋅ ℓi.

50 Chapter 4: Constant-time Implementation

4.1.5.2 Parameters.

As described in [49], we have a prime number p = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ ... ⋅ ℓn − 1,
where the ℓi are small distinct odd primes. We further assume that we have
ℓ1 > ℓ2 > ... > ℓn. In CSIDH-512 we have n = 74, and we sample the elements
of private keys (e1, e2, ..., en) from [0,10].

4.1.5.3 Handling the private key.

Similar to the original implementation of [49], we copy the elements of the
private key into an array e = (e1, e2, ..., en), where ei determines how many
isogenies of degree ℓi we have to compute. Furthermore, we set up another
array f = (10−e1,10−e2, ...,10−en), to determine how many dummy isogenies
of each degree we have to compute. As we go through the algorithm, we
compute all the required isogenies and dummy isogenies, reducing ei resp.
fi by 1 after each degree-ℓi isogeny resp. dummy isogeny. We therefore end
up with a total of 10 isogeny computations (counting isogenies and dummy
isogenies) for each ℓi.

4.1.5.4 Sampling random points.

In Algorithm 3 line 3, we have to find curve points on the current curve that
are defined over Fp instead of Fp2/Fp. As in [49] this can be done by sampling
a random x ∈ Fp, and computing y2 by the curve equation y2 = x3 + ax2 + x.
We then check if y is defined over Fp by a Legendre symbol computation,
i.e. by checking if (y2)(p−1)/2 ≡ 1 (mod p). If this is not the case, we simply
repeat this procedure until we find a suitable point. Note that we require
the curve parameter a to be in affine form. Since a will typically be in
projective form after isogeny computations, we therefore have to compute
the affine parameter each time before sampling a new point.

4.1.5.5 Elliptic curve scalar multiplications.

Since we work with Montgomery curves, using only projective XZ-
coordinates, and projective curve parameters a = A/C, we can use the stan-
dard Montgomery ladder as introduced in [140], adapted to projective curve
parameters as in [63]. This means that per bit of the factor, one combined
doubling and differential addition is performed.

4.1.5.6 Isogenies.

For the computation of isogenies, we use the formulas presented in [137].
They combine the Montgomery isogeny formulas by Costello and Hisil [62],
and Renes [161] with the twisted Edwards formulas by Moody and Shumow
[141], in order to obtain an efficient algorithm for the isogeny computations
in CSIDH. For a ℓi-isogeny, this requires a point K of order ℓi as kernel

4.1 Efficient constant-time implementation of CSIDH 51

generator, and the projective parameters A and C of the current curve. It
outputs the image curve parameters A′ and C ′, and the evaluation of the
point P . As mentioned before, the algorithm computes all multiples of the
point K up to the factor ℓi−1

2
. See, e.g., [23] for more details.

4.1.5.7 Dummy isogenies.

As described before, we want the degree-ℓi dummy isogenies to output the
scalar multiple [ℓi]P instead of an isogeny evaluation of P . Therefore, we
interchange the points K and P in the original isogeny algorithm, such that
it computes [ℓi−1

2
]P . We then perform two more differential additions, i.e.

compute [ℓi+1
2
]P from [ℓi−1

2
]P , P , and [ℓi−3

2
]P , and compute [ℓi]P from

[ℓi+1
2
]P , [ℓi−1

2
]P , and P .

As mentioned before, we want isogenies and dummy isogenies of degree
ℓi to share the same code in order to avoid conditional branching. Hence,
the two extra differential additions are also performed in the isogeny algo-
rithm, without using the results. In our implementation, a conditional point
swapping based on a bitmask ensures that the correct input point is chosen.
This avoids conditional branching that depends on the private key in line 9
of Algorithm 3 (and lines 11 and line 27 of Algorithm 6).

If one is concerned that a side-channel attacker can detect that the curve
parameters A and C are not changed for some time (meaning that a series
of dummy isogenies is performed), one could further re-randomize the pro-
jective representation of the curve parameter A/C by multiplying A and C
by the same random number14 1 < α < p.

4.1.5.8 Running time

We now explain why this algorithm runs in constant time. As already ex-
plained, we perform 10 isogeny computations (counting isogenies and dummy
isogenies) for each degree ℓi. Furthermore, isogenies and dummy isogenies
have the same running time, since they share the same code, and condi-
tionally branching is avoided. Therefore the total computational effort for
isogenies is constant, independent from the respective private key. We also
set the same condition (line 8 of Algorithm 3) for the kernel generator for
the computation of a dummy isogeny, in order not to leak information.

Sampling random points and finding a suitable one doesn’t run in con-
stant time in Algorithm 3. However, the running time only depends on
randomly chosen values, and does not leak any information on the private
key.

Now for simplicity assume that we always find a point of full order, i.e.
a point that can be used to compute one isogeny of each degree ℓi. Then it

14One could actually use an intermediate value α ∈ Fp/{0,1} of the isogeny computation,
since the factor is not required to be truly random.

52 Chapter 4: Constant-time Implementation

is easy to see that the total computational effort for scalar multiplications
in Algorithm 2 is constant, independent from the respective private key. If
we now allow random points, we will typically not satisfy the condition in
line 8 of Algorithm 2 for all i. Therefore, additional computations (sampling
random points, and scalar multiplications) are required. However, this does
not leak information about the private key, since this only depends on the
random choice of curve points, but not on the private key.

Hence, we conclude that the implementation of Algorithm 3 as described
here prevents the leakage scenarios considered in Section 4.1.3. It is however
quite slow compared to the performance of variable-time CSIDH-512 in [137,
49]. In the following section, we focus on how to optimize and speed up the
implementation.

4.1.5.9 Optimizations

4.1.5.10 Sampling points with Elligator.

In [23] Bernstein, Lange, Martindale, and Panny pointed out that Elligator
[21], specifically the Elligator 2 map, can be used in CSIDH to be able to
choose points over the required field of definition. Since we only need points
defined over Fp, this is especially advantageous in our situation. For a ≠ 0
the Elligator 2 map works as follows (see [23]):

• Sample a random u ∈ {2,3, ..., (p − 1)/2}.

• Compute v = a/(u2 − 1).

• Compute e, the Legendre symbol of v3 + av2 + v.

• If e = 1, output v. Otherwise, output −v − a.

Therefore, for all a ≠ 0, we can replace the search for a suitable point in
line 3 of Algorithm 3, at the cost of an extra inversion. However, as ex-
plained in [23], one can precompute 1/(u2 − 1) for some values of u, e.g.
for u ∈ {2,3,4, ...}. Then the cost is essentially the same as for the random
choice of points, but we always find a suitable point this way, compared to
the probability of 1/2 when sampling random points. This could, however,
potentially lead to the case that we cannot finish the computation: Consider
that we only have one isogeny of degree ℓi left to compute, but for all of the
precomputed values of u, the order of the corresponding point is not divided
by ℓi. Then we would have to go back to a random choice of points to finish
the computation. However, our experiments suggest that it is enough to
have 10 precomputed values. Note that the probability for actually finding
points of suitable order appears to be almost unchanged when using Elligator
instead of random points, as discussed in [23].

For a = 0, [23] also show how to adapt the Elligator 2 map to this case,
but also argue that one could precompute a point of full order (or almost

4.1 Efficient constant-time implementation of CSIDH 53

full order, i.e. divided by all ℓi) and simply use this point whenever a = 0.
We follow their latter approach.

4.1.5.11 SIMBA (Splitting isogeny computations into multiple
batches).

In Section 4.1.4, we analyzed the running time of variable-time CSIDH-512
for the keys e1 = (5,5, ...,5) and e2 = (5,−5,5,−5, ...). For the latter, the
algorithm is significantly faster, because of the smaller multiplications during
the loop (line 9 of Algorithm 1), see Figure 1. We adapt and generalize this
observation here, in order to speed up our constant-time implementation.

Consider for our setting the key (10,10, ...,10) and that we can again
always choose points of full order. To split the indices into two sets (exactly
as Algorithm 1 does for the key e2), we define the sets S1 = {1,3,5, ...,73}
and S2 = {2,4,6, ...,74}. Then the loops through the ℓi for i ∈ S1 resp.
i ∈ S2 require significantly smaller multiplications, while only requiring to
compute [4k]P with k = ∏i∈S2

ℓi resp. k = ∏i∈S1
ℓi beforehand. We now

simply perform 10 loops for each set, and hence this gives exactly the same
speedup over Algorithm 2, as Algorithm 1 gives for the key e2 compared to
e1, by using two batches of indices instead of only one.

One might ask if splitting the indices in two sets already gives the best
speedup. We generalize the observation from above, now splitting the indices
into m batches, where S1 = {1,m + 1,2m + 1, ...}, S2 = {2,m + 2,2m + 2, ...},
and so on15. Before starting a loop through the indices i ∈ Sj with 1 ≤ j ≤m,
one now has to compute [4k]P with k = ∏h∉Sj

ℓh. The number and size
of these multiplications grows when m grows, so we can expect that the
speedup turns into an increasing computational effort when m is too large.

To find the best choice for m, we computed the total number of Mont-
gomery ladder steps during the computation of one isogeny of each degree
in CSIDH-512 for different m, with the assumptions from above. We did
not take into account here that when m grows, we will have to sample more
points (which costs at least one Legendre symbol computation each), since
this depends on the cost ratio between Montgomery ladder steps and Legen-
dre symbol computations in the respective implementation. Table 1 shows
that the optimal choice should be around m = 5.

If we now come back to the choice of points through Elligator, the assump-
tion from above does not hold anymore, and with very high probability, we
will need more than 10 loops per index set. Typically, soon after 10 loops
through each batch the large degree isogenies will be finished, while there
are some small-degree isogenies left to compute. In this case our optimiza-
tion backfires, since in this construction, the indices of the missing ℓi will

15Note that in [23] a similar idea is described. However, in their algorithm only two
isogeny degrees are covered in each iteration. Our construction makes use of the fact that
we restrict to intervals of nonnegative numbers for sampling the private key elements.

54 Chapter 4: Constant-time Implementation

Table 4.1: Number of Montgomery ladder steps for computing one isogeny
of each degree in CSIDH-512 for different numbers of batches m.

m 1 2 3 4 5 6 7

Ladder steps 16813 9066 6821 5959 5640 5602 5721

be distributed among the m different batches. We therefore need large mul-
tiplications in order to only check a few small degrees per set. Hence it is
beneficial to define a number µ ≥ 10, and merge the batches after µ steps,
i.e., simply going back to Algorithm 2 for the computation of the remaining
isogenies. We dub this construction SIMBA-m-µ.

4.1.5.12 Sampling private-key elements from different intervals.

Instead of sampling all private-key elements from the interval [0,10], and in
total computing 10 isogenies of each degree, one could also consider to choose
the key elements from different intervals for each isogeny degree, as done in
[72]. For a private key e = (e1, e2, ..., en), we can choose an interval [0,Bi]
for each ei, in order to e.g. reduce the number of expensive large-degree
isogenies at the cost of computing more small-degree isogenies. We require

∏i(Bi + 1) ≈ 1174, in order to obtain the same security level as before. For
the security implication of this choice, similar arguments as in Section 4.1.4
apply.
Trying to find the optimal parameters Bi leads to a large integer optimization
problem, which is not likely to be solvable exactly. Therefore, we heuristi-
cally searched for parameters likely to improve the performance of CSIDH-
512. We present them in Section 4.1.6 and Appendix.

Note that if we choose B = (Bi, ...,Bn) differently from B =
(10,10, ...,10), the benefit of our optimizations above will change accord-
ingly. Therefore, we changed the parameters m and µ in our implementation
according to the respective B.

4.1.5.13 Skip point evaluations.

As described before, the isogeny algorithms compute the image curve pa-
rameters, and push a point P through the isogeny. However, in the last
isogeny per loop, this is unnecessary, since we choose a new point after the
isogeny computation anyway. Therefore, it saves some computational effort,
if we skip the point-evaluation part in these cases.

4.1.5.14 Application to variable-time CSIDH.

Note that many of the optimizations from above are also applicable to
variable-time CSIDH-512 implementations as in [137] or [49]. We could

4.1 Efficient constant-time implementation of CSIDH 55

therefore also speed up the respective implementation results using the men-
tioned methods.

4.1.6 Implementation Results

We implemented our optimized constant-time algorithm in C, using the im-
plementation accompanying [137], which is based on the implementation
from the original CSIDH paper by Castryck, Lange, Martindale, Panny, and
Renes [49]. For example the implementation of the field arithmetic in assem-
bly is the one from [49]. Our final algorithm, containing all the optimizations
from above, can be found in Appendix.

Since we described different optimizations that can influence one another,
it is not straightforward to decide which parameters B, m, and µ to use.
Therefore, we tested various choices and combinations of parameters B, m,
and µ, assuming ℓ1 > ℓ2 > ... > ℓn. The parameters and implementation
results can be found in Appendix. The best parameters we found are given
by

B = [5,7,8,8,8,8,8,8,8,11,11,11,

11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,13,13,13,13,13,13

13,13]

using SIMBA-5-11, where the key element ei is chosen from [0,Bi]. We
do not claim that these are the optimal parameters; there might be better
choices that we did not consider in our experiments.

We further tried to rearrange the order of the primes ℓi in the different
loops. As pointed out in [137], it is beneficial to go through the ℓi in de-
scending order. However, if we suppress isogeny point evaluations in the last
iteration per loop, this means that these savings refer to small ℓi, and there-
fore the impact of this is rather small. Hence, we put a few large primes
at the end of the loops, therefore requiring more computational effort for
point multiplications, which is however in some situations outweighed by
the larger savings from not evaluating points.

In this way, the best combination we found for CSIDH-512 is ℓ1 = 349,
ℓ2 = 347, ℓ3 = 337,..., ℓ69 = 3, ℓ70 = 587, ℓ71 = 373, ℓ72 = 367, ℓ73 = 359, and
ℓ74 = 353, using SIMBA-5-11 and B from above, where the Bi are swapped
accordingly to the ℓi.
In Table 2, we give the cycle count and running time for the implementation
using the parameters from above. The code is freely available at https://

github.com/sopmacF/On-Lions-and-Elligators and https://doi.org/

10.5281/zenodo.6900027.
To give a comparison that mainly shows the impact of SIMBA and the

different choice of B, we also ran the straightforward implementation ac-
cording to Algorithm 2 with B = [10,10, ...,10], also using Elligator. In this
case, we measured 621.5 million clock cycles in the same setting as above.

https://github.com/sopmacF/On-Lions-and-Elligators
https://github.com/sopmacF/On-Lions-and-Elligators
https://doi.org/10.5281/zenodo.6900027
https://doi.org/10.5281/zenodo.6900027

56 Chapter 4: Constant-time Implementation

Table 4.2: Performance of one class-group-action evaluation in CSIDH-512
with the mentioned parameters. All timings were measured on an Intel Core
i7-6500 Skylake processor running Ubuntu 16.04 LTS, averaged over 1 000
runs.

Clock Cycles ×108 wall clock time

3.145 121.3 ms

Compared to the performance of the variable-time implementation from
[137], the results from Table 2 mean a slowdown of factor 3.03. However,
as mentioned, also the variable-time implementation can benefit from the
optimizations from this paper, so this comparison should not be taken too
serious.

4.1.7 Conclusion

We present the first implementation of CSIDH that prevents certain side-
channel attacks, such as timing leakages. However, there might be more
leakage models, depending on how powerful the attacker is. There is also
more work to be done on making this implementation as efficient as possible.
It may, e.g., be possible to find a CSIDH-friendly prime p that allows for
faster computations in Fp.

Also the security features of CSIDH remain an open problem. More
analysis on this is required, to show if the parameters are chosen correctly
for the respective security levels.

We note that our results depend on the parameters from CSIDH-512.
However, it is clear that the described optimizations can be adapted to
other parameter sets and security levels as well.

4.1.8 Appendix

4.1.8.1 Implementation Results

We tested several parameters in a dynamical implementation, as explained in
the chapter. The setting is the same as in Section 4.1.6. For the parameters
B0, ...,B4 we chose

B0 = [10,10,10, ...,10],

B1 = [1,6,8,8,8,8,8,8,8,

12,12,12,12,12,12,12,12,12,12,12,12,12,12,14,14,14,14,14,

14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,

14,14,14,14,14,14,14,14],

4.1 Efficient constant-time implementation of CSIDH 57

1st 2nd 3rd

B0 µ=10
338.1

µ=10
343.5

µ=11
343.7

m=5 m=6 m=5

B1 µ=12
329.3

µ=14
330.6

µ=13
330.8

m=4 m=4 m=4

B2 µ=11
326.5

µ=12
327.0

µ=11
327.6

m=5 m=5 m=4

B3 µ=16
333.8

µ=17
337.6

µ=16
339.3

m=4 m=4 m=3

B4 µ=20
397.5

µ=20
399.0

µ=21
399.5

m=3 m=4 m=3

B2 = [5,7,8,8,8,8,8,8,8,

11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,13,

13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,

13,13,13,13,13,13,13,13],

B3 = [2,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,10,10,

10,10,10,10,10,10,10,10,10,16,16,16,16,16,16,16,16,16,16,

16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,

16,16,16,16,16,16,16,16,16], and

B4 = [2,12,20,20,

20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,

20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,

20,20,20,20,20,20,20,20,20].

We measured many different combinations with different m and µ, running
SIMBA-m-µ as described above, averaging the running time over 100 runs
per parameter set, given in 106 clock cycles. For each Bi, we present the
three best combinations we found.

For the best combinations mentioned above, we further tried to rear-
range the order of the primes ℓi in the loops. As pointed out in [137], it is
beneficial to go through the ℓi in descending order. However, if we suppress
isogeny point evaluations in the last iteration per loop, this means that these
savings refer to small ℓi, and therefore the impact of this is rather small.
Hence, we put a few large primes at the end of the loops, therefore requiring
more computational effort for point multiplications, which is however in
some situations outweighed by the larger savings from not evaluating points.

In this way, the best combination we found for CSIDH-512 is ℓ1 = 349,
ℓ2 = 347, ℓ3 = 337,..., ℓ69 = 3, ℓ70 = 587, ℓ71 = 373, ℓ72 = 367, ℓ73 = 359, and

58 Chapter 4: Constant-time Implementation

ℓ74 = 353, using SIMBA-5-11 and B2, where the Bi are swapped accordingly
to the ℓi.

In the same setting as in Section 4.1.7, we measured 322.6 million
clock cycles for this combination, which saves 3.9 million clock cycles
compared to the results from above.

4.1.8.2 Algorithms

In this section we describe our constant-time algorithm, containing the
optimizations from above. We split the application of SIMBA in two parts:
SIMBA-I splits the isogeny computations in m batches, and SIMBA-II
merges them after µ rounds. Note that in our implementation, it is actually
not required to generate all the arrays from SIMBA-I.

Algorithm 5 shows the full class group action evaluation. Due to
many loops and indices, it looks rather complicated. We recommend to
additionally have a look at our implementation, provided in Section 4.1.6.

Algorithm 4: SIMBA-I.

Input : e = (e1, ..., en), B = (B1, ...,Bn), m.

Output: ei,iso = (ei,iso1 , ..., ei,ison), ei,dum = (ei,dum1 , ..., ei,dumn), ki for
i ∈ {0, ...,m − 1}.

1 Initialize ei,iso = ei,dum = (0,0, ...,0) and ki = 4 for i ∈ {0, ...,m − 1}
2 foreach i ∈ {1, ...,74} do

3 ei%m,iso
i ← ei.

4 ei%m,dum
i ← Bi − ei.

5 foreach j ∈ {1, ...,m} do
6 if j ≠ (i%m) then
7 ki ← ki ⋅ ℓi.

4.1 Efficient constant-time implementation of CSIDH 59

Algorithm 5: SIMBA-II.

Input : ei,iso = (ei,iso1 , ..., ei,ison) and ei,dum = (ei,dum1 , ..., ei,dumn) for
i ∈ {0, ...,m − 1}, m.

Output: eiso = (eiso1 , ..., eison), e
dum = (edum1 , ..., edumn), and k.

1 Initialize eiso = edum = (0,0, ...,0), and k = 4.
2 foreach i ∈ {1, ...,74} do

3 eisoi ← ei%m,iso
i .

4 edumi ← ei%m,dum
i .

5 if eisoi = 0 and edumi = 0 then
6 k ← k ⋅ ℓi.

60 Chapter 4: Constant-time Implementation

Algorithm 6: Constant-time evaluation of the class group action
in CSIDH-512.
Input : a ∈ Fp , e = (e1, ..., en), B, m, µ.
Output: a′ such that [le11 ⋅ ⋅ ⋅ lenn]Ea = Ea′ .

1 Run SIMBA-I(e, B, m).
2 foreach i ∈ {1, ..., µ} do
3 foreach j ∈ {1, ...,m} do
4 Run Elligator to find a point P , where yP ∈ Fp.
5 P ← [kj]P .

6 S = {ι ∣ em,iso
ι ≠ 0 or em,dum

ι ≠ 0}.
7 foreach ι ∈ S do
8 α =∏κ∈S,κ>ι ℓκ.
9 K ← [α]P.

10 if K ≠∞ then
11 if ej,isoι ≠ 0 then
12 Compute a degree-ℓι isogeny φ ∶ Ea → Ea′ with

ker(φ) = ⟨K⟩.
13 a← a′, P ← φ(P), ej,isoι ← ej,isoι − 1.

14 else
15 Compute a degree-ℓι dummy isogeny:

16 a← a, P ← [ℓι]P , ej,dumι ← ej,dumι − 1.

17 if ej,isoι = 0 and ej,dumι = 0 then
18 Set kj = kj ⋅ ℓι.

19 Run SIMBA-II(ei,iso and ei,dum for i ∈ {0, ...,m − 1}, m).

20 while some eisoi ≠ 0 or edumi ≠ 0 do
21 Run Elligator to find a point P , where yP ∈ Fp.

22 Set P = (x ∶ 1), P ← [k]P , S = {i ∣ eisoi ≠ 0 or edumi ≠ 0}.
23 foreach i ∈ S do
24 Let m =∏j∈S,j<i ℓi.
25 Set K ← [m]P.
26 if K ≠∞ then
27 if eisoi ≠ 0 then
28 Compute a degree-ℓi isogeny φ ∶ Ea → Ea′ with

ker(φ) = ⟨K⟩.
29 a← a′, P ← φ(P), eisoi ← eisoi − 1.

30 else
31 Compute a degree-ℓi dummy isogeny:

32 a← a, P ← [ℓi]P , edumi ← edumi − 1.

33 if eisoi = 0 and edumi = 0 then
34 Set k = k ⋅ ℓi.

4.2 CTIDH: faster constant-time CSIDH 61

4.2 CTIDH: faster constant-time CSIDH

This chapter is for all practical purposes identical to the paper CTIDH:
faster constant-time CSIDH [12] authored jointly with Gustavo Banegas,
Daniel J. Bernstein, Tung Chou, Tanja Lange, Michael Meyer, Benjamin
Smith, and Jana Sotáková, which was published at CHES 2021.

4.2.1 Introduction

Isogeny-based cryptography, a relatively new area of post-quantum cryptog-
raphy, has gained substantial attention in the past few years. Schemes like
SIDH (Supersingular Isogeny Diffie–Hellman) [109] and CSIDH (Commuta-
tive Supersingular Isogeny Diffie–Hellman) [49] offer key-exchange protocols
with the smallest key sizes among post-quantum systems. CSIDH is even a
non-interactive key exchange, matching the data flow of traditional Diffie–
Hellman key exchange, and it has received a considerable amount of attention
related to constant-time algorithms [136, 154, 51, 104, 56, 3, 54].

Briefly, one can explain CSIDH as follows. Pick small odd primes ℓ1 < ℓ2 <
⋅ ⋅ ⋅ < ℓn such that p = 4⋅∏

n
i=1 ℓi−1 is also prime. A public key is a supersingular

elliptic curve EA/Fp ∶ y
2 = x3 +Ax2 +x, specified by a single element A ∈ Fp.

Given this curve one can efficiently compute two curves ℓi-isogenous to EA,
denoted li ⋆EA and l−1i ⋆EA, for any of the ℓi in the definition of p. Alice’s
private key is a list of exponents (e1, . . . , en) ∈ Zn where ei shows how often
each li is used: Alice’s public key is le11 ⋯lenn ⋆E0 = EA, and if Bob’s public
key is EB then the secret shared with Bob is le11 ⋯lenn ⋆EB . The key-exchange
protocol works because ⋆ is a commutative group action: the ordering of the
isogenies is not important.

The first constant-time CSIDH paper [136] specified each exponent ei as
being between 0 and a public constant mi, and always computed mi itera-
tions of li, secretly discarding the dummy operations beyond ei iterations.
The original CSIDH paper [49] had allowed ei ∈ [−mi,mi]; in the constant-
time context this might seem to require mi iterations of li plus mi iterations
of l−1i , but [154] introduced a “2-point” algorithm with just mi iterations,
each iteration being only about 1/3 more expensive than before. All mi were
taken equal in [49], for example taking ei ∈ [−5,5] for CSIDH-512; subse-
quent papers did better by allowing mi to depend on i (as suggested in [49,
Remark 14]) and accounting for the costs of li. Further speedups in the lit-
erature come from various techniques to speed up each li computation and
to merge work across sequences of li computations.

4.2.1.1 Contributions of this chapter

This chapter introduces a new key space for CSIDH, and a new constant-time
algorithm to evaluate the CSIDH group action. The new key space is not

62 Chapter 4: Constant-time Implementation

useful by itself—it slows down previous constant-time algorithms—and sim-
ilarly the new constant-time algorithm is not useful for previous key spaces;
but there is a synergy between the key space and the algorithm, and using
both of them together produces a large improvement in the performance of
constant-time CSIDH.

As a very small example of the new key space, assume that one is using
just 6 primes and allows at most 6 isogeny computations, with each li ex-
ponent being nonnegative. The standard key space chooses (e1, e2, . . . , e6) ∈
{0,1}6, giving 26 = 64 keys. The new key space, with 2 batches of 3 primes
each, chooses (e1, e2, . . . , e6) ∈ [0,3]

6 with the condition that e1 + e2 + e3 ≤ 3
and e4 + e5 + e6 ≤ 3, giving 202 = 400 keys. Similar comments apply when
negative exponents are allowed.

The extreme case of putting each prime into a size-1 batch is not new:
it is the standard key space. The opposite extreme, putting all primes into
1 giant batch, is also not new: putting a bound on the 1-norm of the key
vector was highlighted in [146] as allowing the best tradeoffs between the
number of isogenies and the size of the key space. In the above example, 1
giant batch of 6 primes gives 924 keys for 6 isogenies, i.e., 0.61 isogenies per
key bit, compared to 1 isogeny per key bit for the standard key space.

However, plugging 1 giant batch into constant-time algorithms takes 36
isogenies for 924 keys, since each of the 6 primes uses 6 computations. Our
intermediate example, 2 batches of 3 primes each, uses 18 isogenies for 400
keys, which is still many more isogenies per key bit than 6 isogenies for 64
keys.

We do better by evaluating isogenies differently. The central challenge
tackled in this paper is to develop an efficient constant-time algorithm for the
new key space, computing any isogeny in a batch using the same sequence
of operations. This raises several questions:

1. How does one optimally compute a sequence of isogenies, and handle
probabilistic failures in standard algorithms to compute li, while at the
same time hiding which isogeny is computed? See Section 4.2.4 for the
introduction of atomic blocks for these computations, and Section 4.2.5
for how to compute them in constant time.

2. How does one optimally set batches, compute private keys, and deter-
mine the number of isogenies per batch to match a required size of the
key space? See Section 4.2.3 for analysis of the key space, and Section
4.2.6 for how to minimize the multiplication count.

3. How does one minimize the cycle count for constant-time software?
Section 4.2.7 describes our software and low-level ideas; Section 4.2.8
presents the speeds.

Our constant-time algorithm combines several old and new techniques. For
example, as observed in [23], Vélu’s formulas have a Matryoshka-doll struc-

4.2 CTIDH: faster constant-time CSIDH 63

ture; we constrain the more recent
√

élu formulas [19] in a way that creates
a Matryoshka-doll structure. The cost of an isogeny computation exploiting
this structure depends on the largest prime in the batch for the traditional
formulas, but also on the smallest prime in the batch for

√
élu. Standard

algorithms to compute li fail with probability 1/ℓi; to hide which ℓi in a
batch is used we arrange for failures to occur with probability matching the
smallest prime in the batch. Our batches consist of primes of similar sizes, to
obtain the optimal tradeoffs between the cost per batch and the size of the
key space. Further constant-time optimizations are described throughout
the paper.

For comparability we report CSIDH-512 speeds, setting records in multi-
plications and in cycles for complete constant-time software. Partial analy-
ses [23, 158, 35, 54] suggest that the post-quantum security level of CSIDH-
512 is around 260 qubit operations; for applications that want higher security
levels, our software also supports larger sizes.

4.2.2 Background

This sections reviews the CSIDH group action, computations of individual
ℓ-isogenies, strategies for computing sequences of isogenies, and previous
constant-time algorithms.

4.2.2.1 The CSIDH group action

CSIDH [49] is a Diffie–Hellman-like key-exchange protocol based on isoge-
nies of supersingular elliptic curves over a finite field Fp. For a prime p > 3
an elliptic curve E/Fp is supersingular if and only if #E(Fp) = p + 1, where
E(Fp) is its group of points over Fp. CSIDH uses p ≡ 3 (mod 8), and uses
supersingular elliptic curves over Fp that can be written in Montgomery
form EA ∶ y2 = x3 +Ax2 + x for A ∈ Fp/{−2,2}. We call A the Montgomery
coefficient of EA. We write E = {EA ∶ #EA(Fp) = p+1} for the set of CSIDH
curves andM = {A ∶ EA ∈ E} for the set of corresponding Montgomery coeffi-
cients. Curves EA for distinct A ∈M are non-isomorphic by [49, Proposition
8], and each EA(Fp) is cyclic.

An isogeny is a nonzero map φ ∶ E → E′ which is given by rational
functions and is compatible with elliptic-curve addition. An ℓ-isogeny is an
isogeny of degree ℓ (as a rational map). Isogenies are typically defined by
their kernels, i.e., by the points they map to ∞. Computing an ℓ-isogeny
with Vélu’s formulas requires a point P of order ℓ; the isogeny has kernel
⟨P ⟩, and any point in ⟨P ⟩ of order ℓ leads to the same isogeny.

The CSIDH prime p is chosen as p = 4 ⋅∏
n
i=1 ℓi − 1 for small odd primes

ℓ1 < ℓ2 < ⋯ < ℓn. If EA is a curve in E then there are ℓj − 1 points of order
ℓj in EA(Fp). Each of these points of order ℓj generates the kernel of an
ℓj-isogeny EA → EA′ , which is the same isogeny for all of these points. The
codomain EA′ of this ℓj-isogeny is written lj ⋆EA.

64 Chapter 4: Constant-time Implementation

Fix i ∈ Fp2 with i2 = −1. Define ẼA(Fp) as the set of points (x, iy) ∈
EA(Fp2) where x, y ∈ Fp, along with the neutral element; equivalently,

ẼA(Fp) is the image of E−A(Fp) under the isomorphism (x, y) ↦ (−x, iy).

For each ℓj , there are ℓj − 1 points of order ℓj in ẼA(Fp). Each of these
points generates the kernel of an ℓj-isogeny EA → EA′′ , the same isogeny for
all of these points. The codomain EA′′ of this ℓj-isogeny is written l−1j ⋆EA.

The isogeny from EA to l−1j ⋆EA maps the points of order ℓj in EA(Fp)

to points of order ℓj , while mapping the points of order ℓj in ẼA(Fp) to
∞ on l−1j ⋆ EA. The isogeny from EA to lj ⋆ EA maps the points of order

ℓj in ẼA(Fp) to points of order ℓj , while mapping the points of order ℓj in
EA(Fp) to ∞ on lj ⋆EA.

Applying ℓi-isogenies induces a group action [23] of the commutative
group Zn on E . An exponent vector (e1, . . . , en) ∈ Zn acts on the curve EA

to produce the curve (le11 . . . lenn) ⋆ EA, computed as a sequence having ∣ej ∣
many ℓj-isogenies for each j, each isogeny using lj if ej > 0 or l−1j if ej < 0.

The private key of each party is a (secret) vector (e1, . . . , en) sampled
from a finite key space K ⊂ Zn. To protect against meet-in-the-middle at-
tacks, it is conventional to take #K ≥ 22λ for security 2λ, but see [54] for
arguments that smaller key spaces suffice. Beyond the size of K, the specific
choice of K has an important impact on efficiency.

Most previous CSIDH implementations have used one of two types of key
space. Given an exponent bound vector m = (m1, . . . ,mn) ∈ Zn

≥0, let Km ∶=

∏
n
i=1{−mi, . . . ,mi} and K+m ∶= ∏

n
i=1{0, . . . ,mi}. Clearly, #Km = ∏

n
i=1(2mi +

1) and #K+m = ∏
n
i=1(mi + 1). The original CSIDH paper [49] and [154]

use Km with m = (5, . . . ,5) for CSIDH-512. It was suggested in [49, Remark
14] and shown in [56] that allowing the mi to vary improves speed. The
space K+m with m = (10, . . . ,10) was used in [136] for CSIDH-512.

4.2.2.2 Computing isogenies

Let P ∈ EA be a point of order ℓ with x-coordinate in Fp and φ ∶ EA → EA′ =
EA/⟨P ⟩ the ℓ-isogeny induced by P . The main computational task, called
xISOG, is to compute (1) the Montgomery coefficient A′ of the target curve
EA′ and (2) the images under φ of some specified points (normally zero, one,
or two points) Q ∈ EA with x-coordinate in Fp.

Vélu and
√
élu. The main algorithms for xISOG are Vélu’s formulas [184]

and
√

élu16 [19]. The main computational task in both of these algorithms
is to evaluate a polynomial

hS(X) =∏
s∈S
(X − x([s]P)) (4.1)

16Pronounced “square-root Vélu”.

4.2 CTIDH: faster constant-time CSIDH 65

for some index set S. All the arithmetic is done using only x-coordinates.

Vélu’s formulas evaluate hS(X) with S = {1,2,3, . . . , (ℓ − 1)/2} by first
computing x(P), x([2]P), . . . x([(ℓ − 1)/2]P) and then evaluating the prod-
uct (4.1). This costs O(ℓ) field multiplications. Specifically, computing A′

costs about 4ℓ field multiplications and computing the image of a point costs
about 2ℓ extra field multiplications.

For
√

élu, in contrast to the linear algorithm of Vélu, the main part of the
product is evaluated using a baby-step-giant-step strategy. It is simplest to
evaluate hS(X) with S = {1,3,5, . . . , ℓ−2}; this set S is split into a “box” U×
V and leftover set W such that S ↔ (U ×V)∪W . Then hS(X) is computed
as the product of hW (X) with the resultant of hU(X) and a polynomial
related to hV (X); see [19] for details. For each ℓ, one chooses U and V to
minimize cost. Asymptotically,

√
élu uses Õ(

√
ℓ) field multiplications.

One can view Vélu’s formulas as a special case of
√

élu in which U and
V are empty. This special case is optimal for small primes. The exact cutoff
depends on lower-level algorithmic details but is around ℓ = 89.

Sampling points of order ℓ. No efficient way is known to deterministi-
cally generate points of order ℓ in E(Fp). However, E(Fp) is cyclic of order
p+1, so if T is a uniform random point then P = [(p+1)/ℓ]T will have order
ℓ with probability 1 − 1/ℓ. This can—and often will—fail, and needs to be
repeated until it succeeds. Once P has order ℓ, one can use P with Vélu or√

élu.

Typically, one uses the Elligator 2 map [21] to sample points in E(Fp)

or Ẽ(Fp). We discuss this approach in Appendix of this section.

4.2.2.3 Strategies

Computing the multiple [(p + 1)/ℓ]T is very costly. If p has 512 bits then
(p+1)/ℓ has almost 512 bits and this scalar multiplication costs thousands of
field multiplications. The cost of scalar multiplication is typically amortized
by pushing points through isogenies. This approach aims to compute a series
of isogenies after only sampling one point on the initial curve.

Following [109], we call a method that computes a given series of isogenies
a strategy. Informally, a strategy determines the order of isogeny evaluations,
and how to obtain suitable kernel generators through either scalar multipli-
cations or point evaluations. In the context of SIDH, optimal strategies (with
the minimum computational cost) can be found [109]. When adapting this
to CSIDH, there are three main complications: the choice of isogenies to be
combined into a sequence, the possibility of point rejections due to wrong
orders, and the pairwise different degrees of the involved isogenies. Indeed,
[56] showed that a direct adaption of the method of [109] to CSIDH becomes
infeasible when considering all possible permutations. Instead, several av-

66 Chapter 4: Constant-time Implementation

enues for optimizing CSIDH strategies have been proposed, though none
claims actual optimality.

Multiplicative strategy. A simple multiplicative strategy was used in the
algorithm of [49]. Let D, a divisor of p + 1, be the product of the degrees of
the isogenies to be combined in one sequence. Sample a point T on the initial
curve, and set T ← [(p + 1)/D]T ; now the order of T divides D. Compute
P ← [D/ℓ]T , where ℓ is the degree of the first isogeny. If P = ∞, skip this
isogeny and continue with the next isogeny. If P ≠ ∞, then P has order
ℓ, so we can compute the required ℓ-isogeny φ, and push T through to get
T ← φ(T). Either way, the order of T now divides D/ℓ. For the next isogeny,
say of degree ℓ′, compute P ← [D/(ℓℓ′)]T as a potential kernel generator.
Continue in the same fashion, pushing one point through each isogeny, until
T =∞. Note that the scalar multiplications reduce in length at each step: as
observed in [137], processing the isogenies in decreasing degree order reduces
the total cost.

SIMBA. In [49], the product D was taken as large as possible at each step.
The SIMBA (Splitting Isogenies into Multiple Batches) strategy proposed
in [136] limits D for better performance. SIMBA-M partitions the set of
isogeny degrees {ℓ1, . . . , ℓn} into M prides,17 where the i-th pride contains
all isogeny degrees ℓj for which j ≡ i mod M . Each step, SIMBA picks as
many isogenies as possible for a single pride, processing them as described
above. This typically results in a smaller total degree D, making the initial
scalar multiplication T ← [(p+1)/D]T more expensive, while the later scalar
multiplications of the form P ← [D/∏ ℓj]T become significantly cheaper.
Overall, [136] reports that a significant speedup can be achieved for well-
chosen values of M .

Point-pushing strategies. One can also push additional points through
isogenies. For instance, when computing the first kernel generator as de-
scribed above via P ← [D/ℓ]T , one can save an intermediate point T ′ of
small order divisible by ℓ′, push both T and T ′ through the first isogeny,
and then use T ′ to compute the next kernel generator via a smaller scalar
multiplication. This may be more efficient than the multiplicative strategy,
depending on the cost of evaluating φ at additional points compared to the
savings due to cheaper scalar multiplications. However, except for very small
isogeny degrees, the cost of evaluating additional points can be significantly
higher than computing scalar multiplications. Thus, an optimal strategy
is expected to be closer to the multiplicative strategy, only rarely pushing
additional points through isogenies. In [56] optimal strategies are computed

17This refers to the term pride of lions. The term batch was used in [136]; we use pride
here in order to distinguish between SIMBA batches and the batches of primes considered
in CTIDH.

4.2 CTIDH: faster constant-time CSIDH 67

under the assumption of always choosing as many isogeny degrees as possible
per sequence, and an increasing ordering of the involved degrees. It remains
open whether other choices of primes per sequence, as in SIMBA, or dif-
ferent orderings of the degrees could yield a more optimized point-pushing
strategy.

Remark 3. The SIMBA approach is generalized in [104] with point-pushing
strategies within prides, more efficient partitions of SIMBA prides, and their
permutations. However, all optimization attempts have required imposing
certain assumptions in order for the optimization problem to be solvable,
and thus only produce conditionally optimal strategies. The comparison in
[56] shows that all of these approaches give roughly the same performance
results for constant-time CSIDH-512 algorithms: that is, within a margin of
4%.

4.2.2.4 Previous constant-time algorithms

A private key (e1, . . . , en) requires us to compute ∣ei∣ isogenies of degree ℓi
(regardless of the strategy), so the running time of a näıve CSIDH algorithm
depends directly on the key. Various constant-time approaches have been
proposed to avoid this dependency.

What constant time means. A deterministic algorithm computes a
function from inputs to outputs. A randomized algorithm is more com-
plicated: it computes a function from inputs to distributions over outputs,
since each run will, in general, depend on random bits generated inside the
algorithm. Similarly, the time taken by an algorithm is a function from in-
puts to distributions of times. “Constant time” means that this function is
constant: the distribution of algorithm time for input i matches the distri-
bution of algorithm time for input i′. In other words, the algorithm time
provides no information about the input.

In particular, if the input is a CSIDH curve and a private key, and the
output is the result of the CSIDH action, then the algorithm time provides
no information about the private key, and provides no information about the
output.

Avoiding data flow from inputs to branches and array indices is sufficient
to ensure the constant-time property for many definitions of algorithm time,
and is the main focus of work on constant-time algorithms for CSIDH, in-
cluding the work in this paper. Beware, however, that this is not sufficient
if the definition changes to allow, e.g., a variable-time division instruction,
like the division instructions on most computers.

The constant-time property also does not mean that time is deterministic.
The paper [23] aims for time to be constant and deterministic, so as to be
able to run in superposition on a quantum computer, but this costs extra
and is not necessary for the objective of stopping timing attacks.

68 Chapter 4: Constant-time Implementation

Structurally, every claim of constant-time software in the literature relies
on various CPU instructions taking constant time, and could be undermined
by CPU manufacturers adding timing variations to those instructions. The
literature on constant-time software generally assumes, for example, that
multiplication instructions take constant time, and declares that CPUs with
variable-time multiplication instructions are out of scope. Formally, the
constant-time claims are in a model of “time” where various instructions,
including multiplications, take constant time.

Dummy isogenies. [136] used dummy isogenies to obtain a fixed num-
ber of isogenies per group action evaluation. Essentially, if ei is sampled
such that ∣ei∣ ≤ mi, this amounts to computing mi isogenies of degree ℓi,
where mi − ∣ei∣ of these are dummy computations whose results are simply
discarded.18 As noted in Section 4.2.2.2, this might require more than mi

attempts to sample a point of order ℓi, due to the point rejection probability
of 1/ℓi. However, the number of attempts only depends on randomness and
mi, and is thus independent of the choice of ei.

1-point and 2-point approaches. It is observed in [136] that if we com-
pute multiple isogenies from a single sampled point, then the running time
of the algorithm depends on the sign distribution of the private keys. In-
deed, when a single point is sampled, only ℓi-isogenies with equal signs of
the corresponding ei can be combined in a strategy. Since this approach
of combining isogenies is desirable for efficiency (see Section 4.2.2.3), [136]
proposed eliminating this dependency by sampling ei from [0,2mi] instead
of [−mi,mi], although this requires computing twice as many isogenies per
degree.

In order to mitigate this slowdown, [154] proposed sampling two points,
T0 ∈ EA(Fp) and T1 ∈ ẼA(Fp). For each isogeny in the sequence, one picks
the kernel generator according to the sign of the corresponding ei. This
approach combines isogeny computations independent of key signs, and thus
goes back to sampling ei from [−mi,mi] at the cost of pushing two points
through each isogeny instead of one.

A dummy-free variant of the 2-point approach was proposed in [51]. This
requires roughly twice as many isogenies, but may be useful in situations
where fault-injection attacks play an important role. We return to this
approach in Appendix.

18In [136] some other computations are performed inside dummy isogenies, which fa-
cilitate later steps in the algorithm. We omit the details here, since we only use simple
dummy isogenies as described above.

4.2 CTIDH: faster constant-time CSIDH 69

4.2.3 Batching and key spaces

The main conceptual novelty in CTIDH is the organization of primes and
isogenies in batches. For this we define a new batch-oriented key space, which
is slightly more complicated than the key spaces Km and K+m mentioned in
Section 4.2.2.

Batching primes. In CTIDH, the sequence of primes (ℓ1, . . . , ℓn) is par-
titioned into a series of batches: subsequences of consecutive primes. Let
0 < B ≤ n be the number of batches; we represent the sequence of the batch
sizes by a vector N = (N1, . . . ,NB) ∈ ZB

>0 with ∑
B
i=1Ni = n. We relabel

the primes in batches as: (ℓ1,1, . . . , ℓ1,N1) ∶= (ℓ1, . . . , ℓN1), (ℓ2,1, . . . , ℓ2,N2) ∶=
(ℓN1+1, . . . , ℓN1+N2), . . . , (ℓB,1, . . . , ℓB,NB

) ∶= (ℓn−NB+1, . . . , ℓn). If ℓi,j corre-
sponds to ℓk, then we also write li,j for lk and ei,j for ek.

Example 1: Say we have n = 6 primes, (ℓ1, . . . , ℓ6). If we take B = 3 and
N = (3,2,1), then (ℓ1,1, ℓ1,2, ℓ1,3) = (ℓ1, ℓ2, ℓ3), (ℓ2,1, ℓ2,2) = (ℓ4, ℓ5), and
(ℓ3,1) = (ℓ6).

Batching isogenies. Consider the i-th batch of primes (ℓi,1, . . . , ℓi,Ni).
Rather than setting a bound mi,j ≥ ∣ei,j ∣ for the number of ℓi,j-isogenies for

each 1 ≤ j ≤ Ni, we set a bound mi ≥ ∑
Ni

j=1 ∣ei,j ∣ and compute mi isogenies
from the batch (ℓi,1, . . . , ℓi,Ni). This looks analogous to the use of dummy
operations in the previous constant-time algorithms, but it gives a larger
keyspace per isogeny computed because of the ambiguity between the degrees
in a batch. Moreover, we will show that it is possible to evaluate any isogeny
within one batch in the same constant time.

Extreme batching choices correspond to well-known approaches to the
group action evaluation: one prime per batch (B = n and N = (1, . . . ,1)) was
considered in [49]; one n-prime batch (B = 1 and N = (n)) is considered in
[23] for the quantum oracle evaluation and in [146] as a speedup for CSIDH.
The intermediate cases are new, and, as we will show, faster.

The new key space. For N ∈ ZB
>0 and m ∈ ZB

≥0, we define

KN,m ∶= {(e1, . . . , en) ∈ Zn ∣ ∑
Ni

j=1 ∣ei,j ∣ ≤mi for 1 ≤ i ≤ B} .

We may see KN,m as a generalization of Km.

Lemma 1. We have

#KN,m =
B

∏
i=1

Φ(Ni,mi) , where Φ(x, y) =
min{x,y}

∑
k=0

(
x

k
)2k(

y

k
)

counts the vectors in Zx with 1-norm at most y.

70 Chapter 4: Constant-time Implementation

Proof. The size of the key space is the product of the sizes for each batch.
In Φ(x, y) the number of nonzero entries in the x positions is k and there are
(x
k
) ways to determine which entries are nonzero. For each of the nonzero

entries there are 2 ways to choose the sign. The vector of partial sums over
these k nonzero entries has k different integers in [1, y] and each vector
uniquely matches one assignment of partial sums. There are (y

k
) ways to

pick k different integers in [1, y].

4.2.4 Isogeny atomic blocks

In this section we formalize the concept of isogeny atomic blocks (ABs),
subroutines that have been widely used in constant-time CSIDH algorithms
but never formalized before. The first step of an algorithm chooses a series
of degrees for which isogenies still need to be computed, and then uses, for
example, the multiplicative strategy (Section 4.2.2.3) to compute a sequence
of isogenies of those degrees. The next step chooses a possibly different series
of degrees, and computes another sequence of isogenies. Each step of the
computation is the evaluation of not one isogeny, but a sequence of isogenies.
Atomic blocks formalize these steps.

Square-free ABs generalize the approach we take when evaluating the
CSIDH group action with the traditional key spaces Km and K+m as in Al-
gorithm 7. Restricted square-free ABs are used to evaluate the group action
using the batching idea with keys in KN,m; with details in Algorithm 8. We
postpone the explicit construction of ABs to Section 4.2.5.

4.2.4.1 Square-free atomic blocks

Definition 19 (Square-free ABs). Let R ⊆ {−1,0,1} and I = (I1, . . . , Ik) ∈
Zk such that 1 ≤ I1 < I2 < ⋅ ⋅ ⋅ < Ik ≤ n. A square-free atomic block of length
k is a probabilistic algorithm αR,I taking inputs A ∈ M and ϵ ∈ Rk and

returning A′ ∈M and f ∈ {0,1}k such that EA′ = (∏i l
fi⋅ϵi
Ii
) ⋆EA, satisfying

the following two properties:

1. there is a function σ such that, for each (A, ϵ), the distribution of f ,
given that (A′, f) is returned by αR,I on input (A, ϵ), is σ(R, I), and

2. there is a function τ such that, for each (A, ϵ) and each f , the distri-
bution of the time taken by αR,I , given that (A′, f) is returned by αR,I

on input (A, ϵ), is τ(R, I, f).

Suppose an algorithm evaluates the group action on input e ∈ K and
A ∈M using a sequence of square-free AB calls (A′, f) ← αR,I(A, ϵ). If in
each step the choice of R and I are independent of e, the algorithm does not
leak information about e through timing.

This is illustrated by Algorithm 7, which expresses the constant-time
group action from [154] using a sequence of square-free ABs with R =

4.2 CTIDH: faster constant-time CSIDH 71

Algorithm 7: Generalization of [154, Algorithm 3], replacing the
inner loop with any square-free AB with R = {−1,0,1}. Keys are
in Km.

Parameters: m = (m1, . . . ,mn)
Input: A ∈M, e = (e1, . . . , en) ∈ Km

Output: A′ with EA′ = (∏i l
ei
i) ⋆EA

1 (µ1, . . . , µn)← (m1, . . . ,mn) ;
2 while (µ1, . . . , µn) ≠ (0, . . . ,0) do
3 Let I = (I1, . . . , Ik) s.t. I1 < ⋯ < Ik and

{I1, . . . , Ik} = {1 ≤ i ≤ n ∣ µi > 0} ;
4 for 1 ≤ i ≤ k do
5 ϵi ← Sign(eIi) ; // 1 if eIi > 0; 0 if eIi = 0; -1 if eIi < 0

6 (A,f)← αR,I(A, (ϵ1, . . . , ϵk)) ; // Square-free AB

7 for 1 ≤ i ≤ k do
8 (µIi , eIi)← (µIi − fi, eIi − ϵi ⋅ fi) ;

9 return A

{−1,0,1} to evaluate the action for keys in Km. The choices of R and I
are independent of e for each AB αR,I , and all other steps can be easily
made constant-time. The choice of I in Step 3 may vary between different
executions, due to the varying failure vectors f of previously evaluated ABs.
However this only depends on the initial choice of mi, and is independent of
e.

Remark 4. The constant-time group action from [136] can also be expressed
simply in terms of ABs. The algorithm is extremely similar to Algorithm 7,
using K+m in place of Km (the algorithm of [136] uses m = (10, . . . ,10)) and
R = {0,1} in place of {−1,0,1}. Line 5 can be simplified to ϵi ← 1 if eIi ≠ 0,
or 0 if eIi = 0.

Remark 5. The distribution of f depends on how the ABs are constructed.
In [136] and [154], Pr(fi = 0) = 1/ℓIi for all i. In [54], f is always
(1,1, . . . ,1).

4.2.4.2 Restricted square-free atomic blocks

In the language of Section 4.2.3, restricted square-free ABs are generaliza-
tions of square-free ABs that further do not leak information on which of
the primes we have chosen from a batch.

Definition 20 (Restricted square-free ABs). Let R ⊆ {−1,0,1}, B ≥ 1, and
I = (I1, . . . , Ik) ∈ Zk such that 1 ≤ I1 < I2 < ⋅ ⋅ ⋅ < Ik ≤ B. A restricted

72 Chapter 4: Constant-time Implementation

square-free atomic block of length k is a probabilistic algorithm βR,I taking
inputs A ∈M, ϵ ∈ Rk, and J ∈ Zk with 1 ≤ Ji ≤ NIi for all 1 ≤ i ≤ k, and

returning A′ ∈M and f ∈ {0,1}k such that EA′ = (∏i l
fi⋅ϵi
Ii,Ji
) ⋆EA, satisfying

the following two properties:

1. there is a function σ such that, for each (A, ϵ, J), the distribution of
f , given that (A′, f) is returned by βR,I on input (A, ϵ, J), is σ(R, I);
and

2. there is a function τ such that, for each (A, ϵ, J) and each f , the dis-
tribution of the time taken by βR,I , given that (A′, f) is returned by
βR,I on input (A, ϵ, J), is τ(R, I, f).

Algorithm 8 uses restricted square-free ABs with R = {−1,0,1} to com-
pute group actions for keys in KN,m; it may be considered a generalization
of Algorithm 7.

Algorithm 8: A constant-time group action for keys in KN,m based
on restricted square-free ABs with R = {−1,0,1}.

Parameters: N , m, B
Input: A ∈M, e = (e1, . . . , en) ∈ KN,m

Output: A′ with EA′ = (∏i l
ei
i) ⋆EA

1 (µ1, . . . , µB)← (m1, . . . ,mB) ;
2 while (µ1, . . . , µB) /= (0, . . . ,0) do
3 Let I = (I1, . . . , Ik) s.t. I1 < ⋯ < Ik and

{I1, . . . , Ik} = {1 ≤ i ≤ B ∣ µi > 0} ;
4 for 1 ≤ i ≤ k do
5 if there exists j such that eIi,j ≠ 0 then
6 Ji ← some such j
7 else
8 Ji ← any element of {1, . . . ,NIi}

9 ϵi ← Sign(eIi,Ji) ; // 1 if eIi,Ji > 0; 0 if eIi,Ji = 0; -1 if

eIi,Ji < 0

10 (A,f)← βR,I(A, (ϵ1, . . . , ϵk), J) ; // Restricted square-free AB

11 for 1 ≤ i ≤ k do
12 (µIi , eIi,Ji)← (µIi − fi, eIi,Ji − ϵi ⋅ fi) ;

13 return A

4.2 CTIDH: faster constant-time CSIDH 73

4.2.5 Evaluating atomic blocks in constant time

This section introduces the algorithm used in CTIDH to realize the restricted
square-free atomic block βR,I introduced in Section 4.2.4. Throughout this
section, R is {−1,0,1}.

As a warmup, Section 4.2.5.1 recasts the inner loop of [154, Algorithm
3] as a realization of the square-free atomic block αR,I . We first present the
algorithm in a simpler variable-time form (Algorithm 9) and then explain
the small changes needed to eliminate timing leaks, obtaining αR,I .

Section 4.2.5.3 presents our new algorithm to realize βR,I . The extra
challenge here is to hide which prime is being used within each batch. Again
we begin by presenting a simpler variable-time algorithm (Algorithm 10) and
then explain how to eliminate timing leaks.

4.2.5.1 Square-free atomic blocks for isogeny evaluation

Algorithm 9 translates the inner loop of [154, Algorithm 3] to the AB frame-
work. The inputs are A ∈ M and ϵ ∈ {−1,0,1}k. The goal is to compute
k isogenies of degrees ℓI1 , . . . , ℓIk , but some of these computations may fail.
The outputs are a vector f ∈ {0,1}k recording which of the computations

succeeded, and A′ such that (∏i l
fi⋅ϵi
Ii
) ⋆EA = EA′ .

The algorithm uses the 2-point approach with dummy isogenies. It uses
two subroutines:

• UniformRandomPoints takes A ∈ M, and returns a uniform random
pair of points (T0, T1), with T0 ∈ EA(Fp) and T1 ∈ ẼA(Fp); i.e., T0 is
a uniform random element of EA(Fp), and T1, independent of T0, is a

uniform random element of ẼA(Fp).

• Isogeny takes A ∈M, a point P in EA(Fp2) with x-coordinate in Fp

generating the kernel of an ℓIj -isogeny φ ∶ EA → EA′ = EA/⟨P ⟩, and a
tuple of points (Q1, . . . ,Qt), and returns A′ and (φ(Q1), . . . , φ(Qt)).

See Appendix of this chapter for analysis of the Elligator alternative to
UniformRandomPoints.

Remark 6. Algorithm 9 uses a multiplicative strategy, but it can easily be
modified to use a SIMBA or point-pushing strategy, which is much more
efficient in general [154, 56]. The isogeny algorithm can be Vélu or

√
élu,

whichever is more efficient for the given degree.

4.2.5.2 Modifying Algorithm 9 to eliminate timing leaks

The following standard modifications to Algorithm 9 produce an algorithm
meeting Definition 19, the definition of a square-free atomic block.

Observe first that fj = 1 if and only if the prime ℓIj divides the order of
the current Ts. This is equivalent to ℓIj dividing the order of the initially

74 Chapter 4: Constant-time Implementation

Algorithm 9: Inner loop of [154, Algorithm 3].

Parameters: k ∈ Z,R = {−1,0,1}, I ∈ Zk
≥0

Input: A ∈M, ϵ ∈ {−1,0,1}k

Output: A′ ∈M, f ∈ {0,1}k

1 (T0, T1)← UniformRandomPoints(A) ;
2 (T0, T1)← ([r]T0, [r]T1) where r = 4∏i/∈I ℓi ;
3 r′ ←∏i∈I ℓi ;
4 for j = k down to 1 do
5 r′ ← r′/ℓIj ;
6 s← SignBit(ϵj) ; // 1 if ϵj < 0, otherwise 0

7 P ← [r′]Ts ;
8 if P /=∞ then // branch without secret information

9 fj ← 1 ;
10 (A′, (T ′

0, T
′
1))← Isogeny(A, P , (T0, T1), Ij) ;

11 if ϵj /= 0 then // branch with secret information

12 (A,T0, T1)← (A
′, T ′

0, T
′
1)

13 else
14 Ts ← [ℓIj]Ts ;

15 else
16 fj ← 0 ;

17 T1−s ← [ℓIj]T1−s ;

18 return A, f

sampled point Ts (since Ts has been modified only by multiplication by
scalars that are not divisible by ℓIj , and by isogenies of degrees not divisible
by ℓIj). This has probability 1−1/ℓIj , since the initial Ts is a uniform random
point in a cyclic group of size p+1. These probabilities are independent across
j, since (T0, T1) is a uniform random pair of points.

To summarize, the distribution of the f vector has position j set with
probability 1 − 1/ℓIj , independently across j. This distribution is a function
purely of I, independent of (A, ϵ), as required. What follows are algorithm
modifications to ensure that the time distribution is a function purely of
(I, f); these modifications do not affect f .

Step 7, taking T0 if s = 0 or T1 if s = 1, is replaced with a constant-time
point selection: e.g., taking the bitwise XOR T0⊕T1, then ANDing each bit
with s, and then XORing the result with T0. Similar comments apply to the
subsequent uses of Ts and T1−s. It is simplest to merge all of these selections
into a constant-time swap of T0, T1 when s = 1, followed by a constant-time
swap back at the bottom of the loop. The adjacent swaps at the bottom

4.2 CTIDH: faster constant-time CSIDH 75

of one loop and the top of the next loop can be merged, analogous merging
is standard in constant-time versions of the Montgomery ladder for scalar
multiplication.

Step 11 determines whether an actual isogeny or a dummy isogeny has to
be computed. The conditional assignment to (A,T0, T1) in the first case is
replaced with unconditional constant-time point selection. The conditional
operation in the second case is replaced with an unconditional operation,
multiplying Ts by ℓIj in both cases. This changes the point Ts in the first
case, but does not change the order of Ts (since the isogeny has already
removed ℓIj from the order of Ts in the first case), and all that matters for the
algorithm is the order. See [136, 154] for a slightly more efficient approach,
merging the multiplication by ℓIj into a dummy isogeny computation.

The branch in Step 8 is determined by public information fj and does not
need to be modified. The isogeny computation inside Isogeny takes constant
time with standard algorithms; at a lower level, arithmetic in Fp is handled
by constant-time subroutines, not by subroutines that try to save time by
suppressing leading zero bits. The computation of UniformRandomPoints

takes variable time with standard algorithms, but the time distribution is
independent of the curve provided as input.

The total time is the sum for initialization (UniformRandomPoints, com-
putation of r and r′, initial scalar multiplication), fj computation (division,
scalar multiplications, selection), and computations when fj = 1 (Isogeny,
scalar multiplication, selection). This sum is a function purely of (I, f),
independent of (A, ϵ), as required.

4.2.5.3 Restricted square-free atomic blocks

We now consider the more difficult goal of hiding which isogeny is being
computed within each batch. We present first the high-level algorithm (Al-
gorithm 10), then the PointAccept and MatryoshkaIsogeny subroutines,
and finally the algorithm modifications to meet Definition 20.

The inputs to Algorithm 10 are A ∈M, ϵ ∈ {−1,0,1}k, and J ∈ Zk. The
goal is to compute k isogenies of degrees ℓI1,J1 , . . . , ℓIk,Jk

. The outputs are

A′ ∈M and f ∈ {0,1}k such that (∏i l
fi⋅ϵi
Ii,Ji
) ⋆EA = EA′ .

Like Algorithm 9, Algorithm 10 uses a 2-point approach and dummy
isogenies. It uses the following subroutines:

• UniformRandomPoints is as before.

• PointAccept replaces the check P ≠ ∞ to prevent timing leakage. It
takes a point P and Ij , Jj ∈ Z such that P either has order ℓIj ,Jj or
1, and outputs either 0 or 1, under the condition that the output is 0
whenever P =∞.

• MatryoshkaIsogeny replaces Isogeny from Algorithm 9. There is an
extra input Jj indicating the secret position within a batch.

76 Chapter 4: Constant-time Implementation

Algorithm 10: The CTIDH inner loop.

Parameters: k ∈ Z,R = {−1,0,1}, I ∈ Zk
≥0

Input: A ∈M, ϵ ∈ {−1,0,1}k, J ∈ Zk
>0

Output: A′ ∈M, f ∈ {0,1}k

1 (T0, T1)← UniformRandomPoints(A) ;
2 (T0, T1)← ([r]T0, [r]T1) where r = 4∏i/∈I∏1≤j≤Ni

ℓi,j ;
3 (T0, T1)← ([r̃]T0, [r̃]T1) where r̃ =∏i∈I∏1≤j≤Ni,j≠Ji

ℓi,j ; // hide

selection

4 r′ ←∏i∈I ℓi,Ji ; // hide selection

5 for j = k down to 1 do
6 r′ ← r′/ℓIj ,Jj ; // hide ℓIj ,Jj, batch is public

7 s← SignBit(ϵj) ; // 1 if ϵj < 0, otherwise 0

8 P ← [r′]Ts ; // hide ℓIj ,Jj, batch is public

9 fj ← PointAccept(P , Ij, Jj) ;
10 if fj = 1 then // this branch is on public information

11 (A′, (T ′
0, T

′
1))← MatryoshkaIsogeny(A, P , (T0, T1), Ij , Jj) ;

12 if ϵj /= 0 then // branch with secret information

13 (A,T0, T1)← (A
′, T ′

0, T
′
1)

14 (T0, T1)← ([ℓIj ,Jj]T0, [ℓIj ,Jj]T1) ; // hide selection

15 return A, f

Note that the output of PointAccept can be 0 when P ≠ ∞, so we add a
multiplication by ℓIj ,Jj in Step 14 to make sure we continue the loop with
points of expected order.

4.2.5.4 PointAccept

Step 8 of Algorithm 10 computes a potential kernel generator P . The
probability that P = ∞ is 1/ℓIj ,Jj

, which depends on Jj . For the
batch (ℓIj ,1, . . . , ℓIj ,NIj

), PointAccept artificially increases this probability

to 1/ℓIj ,1, independent of ℓIj ,Jj , by tossing a coin with success probability

γ =
ℓIj ,Jj ⋅ (ℓIj ,1 − 1)

ℓIj ,1 ⋅ (ℓIj ,Jj − 1)

and only returning fj = 1 if P ≠ ∞ and the coin toss is successful. The
probability that the output is 1 is then γ ⋅ (1 − 1/ℓIj ,Jj) = 1 − 1/ℓIj ,1, which
is independent of Jj . Thus the batch can fail publicly.

4.2 CTIDH: faster constant-time CSIDH 77

4.2.5.5 MatryoshkaIsogeny

MatryoshkaIsogeny replaces the Isogeny computation. It takes the Mont-
gomery coefficient of a curve EA, a batch (ℓi,1, . . . , ℓi,Ni), an isogeny index j
within the batch, a point P of order ℓi,j generating the kernel of an isogeny
φ ∶ EA → EA/⟨P ⟩ = EA′ , and a tuple of points (Q1, . . . ,Qt), and returns A′

and (φ(Q1), . . . , φ(Qt)). MatryoshkaIsogeny is computed with cost inde-
pendent of j.

For Vélu’s formulas, [23] showed how to compute any ℓi-isogeny for ℓi ≤ ℓ
using the computation of an ℓ-isogeny and masking. The first step of com-
puting (4.1) is to compute x(P), x([2]P), . . . , x([(ℓ−1)/2]P). This includes
the computation for smaller ℓi; [23] described this as a Matryoshka-doll
property.

In this chapter we specialize the
√

élu formulas so as to obtain a
Matryoshka-doll structure. We define the sets U and V , introduced in Sec-
tion 4.2.2.2, as the optimal choices for the smallest degree in the batch: i.e.,
ℓi,1. The leftover set W is chosen to make the formulas work even for the
largest prime ℓi,Ni in the batch. Then the baby-step giant-step algorithm
stays unchanged; while we iterate through W we save the intermediate re-
sults corresponding to all degrees ℓi,j in the batch. In the final step, we
select the result corresponding to the index j that we wanted to compute.

The sets U and V have size around
√
ℓi,1. If the primes in the batch are

sufficiently close then the rounded values match or are marginally different,
meaning that the Matryoshka-like formulas are at worst marginally slower
than the optimal formulas for ℓi,Ni .

4.2.5.6 Modifying Algorithm 10 to eliminate timing leaks

We now indicate algorithm modifications to meet Definition 20, the definition
of a restricted square-free atomic block.

As in Section 4.2.5.2, we begin with the distribution of f . For each
input (A, ϵ, J), the distribution has fj set with probability 1 − 1/ℓIj ,1 (not
1− 1/ℓIj ,Jj ; see Section 4.2.5.4), independently across j. This distribution is
a function purely of I, independent of (A, ϵ, J), as required. What remains
is to ensure that the time distribution is a function purely of (I, f).

There are secret scalars r̃, r′, and ℓIj ,Jj used in various scalar multiplica-
tions in Steps 3, 8, and 14. Standard integer-arithmetic algorithms that dy-
namically suppress leading zero bits are replaced by constant-time algorithms
that always use the maximum number of bits, and variable-time scalar-
multiplication algorithms are replaced by a constant-time Montgomery lad-
der, as in [23]. It is straightforward to compute an upper bound on each
scalar in Algorithm 10. See Section 4.2.7 for faster alternatives.

Section 4.2.5.5 explains how to compute MatryoshkaIsogeny in time that
depends only on the batch, not on the selection of a prime within the batch.
Everything else is as in Section 4.2.5.2: the distribution of UniformRan-

78 Chapter 4: Constant-time Implementation

domPoints timings is independent of the inputs, Step 8 uses constant-time
selection, the branch in Step 12 is replaced by constant-time selection, and
the branch in Step 10 does not need to be modified.

4.2.6 Strategies and parameters for CTIDH

The optimization process for previous constant-time algorithms for CSIDH
has two levels. The bottom level tries to minimize the cost of each AB, for
example by optimizing

√
élu parameters and searching for a choice of strategy

from Section 4.2.2.3. The top level searches for a choice of exponent bounds
m = (m1, . . . ,mn), trying to minimize the total AB cost subject to the key
space reaching a specified size. A cost function that models the cost of an
AB, taking account of the bottom-level search, is plugged into the top-level
search.

Optimizing CTIDH is more complicated. There is a new top level, search-
ing for a choice of batch sizes N = (N1, . . . ,NB). These batch sizes influence
the success chance and cost of an AB at the bottom level: see Sections 4.2.5.4
and 4.2.5.5. They also influence the total cost of any particular choice of
1-norm bounds m = (m1, . . . ,mB) at the middle level. The size of the key
space depends on both N and m; see Lemma 1.

This section describes a reasonably efficient method to search for CTIDH
parameters.

Strategies for CTIDH. We save time at the lowest level of the search
by simply using multiplicative strategies. As in previous papers, it would
be easy to adapt Algorithm 10 to use SIMBA or optimized point-pushing
strategies or both, giving many further parameters that could be explored
with more search time, but this is unlikely to produce large benefits.

Seen from a high level, evaluating ABs multiplicatively in CTIDH has
a similar effect to SIMBA strategies for previous algorithms. For exam-
ple, SIMBA-N1 for traditional batch sizes (1, . . . ,1) limits each AB to at
most n/N1 isogenies (if n is divisible by N1), in order to save multiplica-
tive effort. Now consider CTIDH where all B batches have size N1, i.e.,
N = (N1, . . . ,N1). Each CTIDH AB then computes at most B = n/N1

isogenies, saving multiplicative effort in the same way.

One could split a CTIDH AB into further SIMBA prides, but [136] al-
ready shows that most of the benefit of SIMBA comes from putting some
cap on the number of isogenies in an AB; the exact choice of cap is rela-
tively unimportant. One could also try to optimize point-pushing strategies
as an alternative to multiplicative strategies, as an alternative to SIMBA,
or within each SIMBA pride, but the searches in [104] and [56] suggest that
optimizing these strategies saves at most a small percentage in the number
of multiplications, while incurring overhead for managing additional points.

4.2 CTIDH: faster constant-time CSIDH 79

Cost functions for CTIDH. The search through various CTIDH batch-
ing configuration vectors N and 1-norm bound vectors m tries to minimize
a function C(N,m), a model of the cost of a group-action evaluation. The
numerical search examples later in this section use the following cost func-
tion: the average number of multiplications (counting squarings as multipli-
cations) used by the CTIDH algorithms, including the speedups described
in Section 4.2.7.

One way to compute this function is to statistically approximate it:
run the software from Section 4.2.7 many times, inspect the multiplication
counter built into the software, and take the average over many experiments.
A more efficient way to compute the same function with the same accuracy
is with a simulator that skips the multiplications but still counts how many
there are. Our simulator, despite being written in Python, is about 50 times
faster than the software from Section 4.2.7.

However, using a statistical approximation raises concerns about the im-
pact of statistical variations. So, instead of using the software or the simu-
lator, we directly compute the average cost of the first AB, the average cost
of the second AB, etc., stopping when the probability of needing any further
AB is below 10−9.

Batch b, with smallest prime ℓb,1, has success probability 1 − 1/ℓb,1 from
each AB, so the chance qb of reaching mb successes within R ABs is the sum
of the coefficients of xmb , xmb+1, . . . in the polynomial (1/ℓb,1+(1−1/ℓb,1)x)

R.
Batches are independent, so q1q2⋯qB is the probability of not needing any
further AB. Note that multiplying the polynomial (1/ℓb,1+(1−1/ℓb,1)x)

R by
1/ℓb,1 + (1 − 1/ℓb,1)x for each increase in R is more efficient than computing
binomial coefficients.

Computing the cost of an AB (times the probability that the AB occurs)
is more complicated. Splitting the analysis into 2B cases—e.g., one case,
occurring with probability (1 − q1)(1 − q2)⋯(1 − qB), is that all B batches
still remain to be done—might be workable, since B is not very large and
one can skip cases that occur with very low probability. We instead take the
following approach. Fix b. The probability that batch b is in the AB is 1−qb;
the probability that batch a is in the AB for exactly j values a < b is the
coefficient of xj in the polynomial ∏a<b(qa + (1 − qa)x); and the probability
that batch c is in the AB for exactly k values c > b is the coefficient of xk in
the polynomial ∏c>b(qc + (1− qc)x). There are O(B2) possibilities for (j, k);
each possibility determines the total number of batches in the AB and the
position of b in the AB, assuming b is in the AB. For the AB algorithms
considered here, this is enough information to determine the contribution of
batch b to the cost of the AB. Our Python implementation of this approach
has similar cost to 100 runs of the simulator, depending on B.

We also explored various simpler possibilities for cost functions. A de-
terministic model of ABs is easier to compute and simulates real costs rea-

80 Chapter 4: Constant-time Implementation

sonably well, leading to parameters whose observed costs were consistently
within 10% of the best costs we found via the cost function defined above.

Optimizing the 1-norm bounds. Given a fixed configuration N of B
batches, we use a greedy algorithm as in [56] to search for a 1-norm bound
vector m as follows:

1. Choose an initial m = (m1, . . . ,mB) such that KN,m is large enough,
and set Cmin ← C(N,m).

2. For each i in {1, . . . ,B}, do the following:

(a) Set m̃← (m1, . . . ,mi−1,mi − 1,mi+1, . . . ,mB).

(b) If KN,m̃ is large enough, set (m,Cmin)← (m̃,C(N, m̃)).

(c) Else, set m̃′ ← m̃, and for each j ≠ i in {1, . . . ,B} do the following:

i. Set m̃← (m̃′
1, . . . , m̃

′
j−1, m̃

′
j + 1, m̃′

j+1, . . . , m̃
′
B).

ii. If KN,m̃ is too small, recursively go to Step 2(c).

iii. Else, if C(N, m̃) < Cmin, set (m,Cmin)← (m̃,C(N, m̃)).

3. If Cmin was updated in Step 2, then repeat Step 2.

4. Return (m,Cmin).

This algorithm applies small changes to the bound vector m at each
step, reducing one entry while possibly increasing others. Obviously, this
finds only a locally optimal m with respect to these changes and the initial
choice of m in Step 1; different choices generally produce different results.

One way to choose an initial m is to try (1,1, . . . ,1), then (2,2, . . . ,2),
etc., stopping when KN,m is large enough. Another approach, in the context
of the N search described below, is to start from the best m found for the
parent N , and merely increase the first component of m until KN,m is large
enough; usually at most one increase is needed.

The algorithm involves at least B(B −1) evaluations of the cost function
for the final pass through Step 2. It can involve many more evaluations if
there are many recursive calls or if there are many improvements to m, but
usually these are small effects.

Optimizing the prime batches. We optimize N via a similar greedy
algorithm, using the algorithm above as a subroutine. For a fixed number
of batches B, we proceed as follows:

1. Choose an initial N = (N1, . . . ,NB) with ∑iNi = n, and let (m,Cmin)
be the output of the algorithm above applied to N .

2. For each i ∈ {1, . . . ,B}, do the following:

4.2 CTIDH: faster constant-time CSIDH 81

(a) Set Ñ i ← (N1, . . . ,Ni−1,Ni − 1,Ni+1, . . . ,NB).

(b) For each j ≠ i in {1, . . . ,B},

i. Set Ñ i,j ← (Ñ i
1, . . . , Ñ

i
j−1, Ñ

i
j + 1, Ñ i

j+1, . . . , Ñ
i
B).

ii. Let (m̃, C̃) be the output of the algorithm above applied to
N i,j .

iii. If C̃ < Cmin, then update (N,m,Cmin)← (Ñ
i,j , m̃, C̃).

3. If Cmin was updated in Step 2, then repeat Step 2.

4. Return N , m, and Cmin.

This algorithm also finds only a local optimum with respect to these
changes, and with respect to the initial choice of N in Step 1; again, different
choices may lead to different results. Our experiments took an initial choice
for N such that z ≤ N1 ≤ ⋯ ≤ NB ≤ z + 1 for some z ∈ Z. One can also omit
one or more large primes ℓj by taking each Nj = 1 and mj = 0.

Within the full two-layer greedy algorithm, each N considered at the
upper layer involves B(B − 1) calls to the lower layer, the optimization of 1-
norm bounds. Recall that each call to the lower layer involves at least B(B−
1) evaluations of the cost function. Overall there are nearly B4 evaluations
of the cost function.

Numerical examples. Table 4.3 shows examples of outputs of the above
search. For each B, the “N”/“m” column shows the final (N,m) found,
and the “cost” column shows the cost function for that (N,m), to two digits
after the decimal point.

We used a server with two 64-core AMD EPYC 7742 CPUs, but limited
each search to 32 cores running in parallel. We parallelized only the upper
layer of the search; often fewer than 32 cores were used since some calls to the
lower layer were slower than others. For each B, “wall” shows the seconds
of real time used for the search, and “CPU” shows the total seconds of CPU
time (across all cores, user time plus system time) used for the search.

4.2.7 Constant-time software for the action

We have built a self-contained high-performance software package, high-

ctidh, that includes implementations of all of the operations needed by
CSIDH users for whichever parameter set is selected: constant-time key
generation, constant-time computation of the CSIDH action, and validation
of (claimed) public keys. The package uses the CTIDH key space and CTIDH
algorithms to set new cycle-count records for constant-time CSIDH.

The high-ctidh source code is in C, with assembly language for field
arithmetic. Beyond the performance benefits, using low-level languages is
helpful for ensuring constant-time behavior, as explained below. Measuring

82 Chapter 4: Constant-time Implementation

B wall cost N
CPU m

1 1.27 3462230.00 74
1.25 153

2 1.55 1483388.79 36 38
1.80 64 96

3 2.59 990766.14 23 27 24
4.78 40 62 62

4 5.14 755266.87 14 19 20 21
22.17 29 45 46 46

5 4.65 649002.35 13 15 15 17 14
22.15 23 37 38 38 35

6 13.29 583256.02 10 11 12 12 15 14
150.29 19 31 31 32 32 30

7 24.98 537496.27 7 10 10 12 12 14 9
334.31 17 27 28 28 28 28 22

8 65.90 504984.23 5 9 9 10 10 11 11 9
1141.82 15 24 25 25 25 26 26 16

9 138.65 485052.29 5 7 8 8 8 7 10 12 9
2763.28 14 22 23 23 23 23 24 24 13

10 393.63 471184.70 5 7 8 8 8 7 9 10 11 1
8209.63 13 20 22 22 22 22 22 22 22 1

11 966.91 451105.76 3 5 6 7 7 8 7 9 10 11 1
21740.60 11 18 19 20 20 21 20 21 21 21 1

12 1484.31 448573.04 3 4 6 6 6 6 7 7 8 10 10 1
36763.23 10 16 18 18 19 19 19 19 19 19 19 2

13 2301.94 445054.10 3 4 4 6 6 6 7 7 8 7 7 8 1
55252.51 10 16 17 18 18 18 18 18 18 18 17 14 1

14 6509 437985.55 2 3 4 4 5 5 6 7 7 8 8 6 8 1
161371.00 10 14 16 17 17 17 18 18 18 18 18 13 13 1

15 8341 440201.56 3 4 3 4 4 5 5 5 6 6 6 7 7 8 1
211336.80 9 14 15 15 16 16 16 16 16 16 16 16 15 13 1

16 18060 442718.29 2 3 4 4 5 5 5 5 6 6 7 8 4 1 8 1
491547.34 9 13 15 16 16 17 17 17 17 16 17 17 7 1 16 1

17 29733 450343.88 2 3 4 4 5 5 5 5 5 5 5 5 7 5 3 5 1
808639.64 8 12 14 15 15 15 16 15 16 16 14 13 16 11 6 10 1

18 73925 443412.54 2 2 3 3 4 4 5 5 5 5 5 6 6 6 3 1 8 1
2012125.98 8 11 13 14 14 15 15 15 15 15 15 15 14 14 7 2 15 1

19 103825 447506.32 2 2 3 3 3 4 4 5 5 5 6 4 6 1 8 4 7 1 1
2961123.56 8 12 14 15 15 15 15 16 16 16 16 10 16 2 16 7 14 1 1

20 167114 455328.80 2 2 3 3 4 4 5 5 5 5 5 4 7 7 1 3 6 1 1 1
4794006.52 9 12 14 14 16 16 16 16 16 16 16 11 16 16 2 5 12 1 1 1

21 278646 460901.00 2 2 3 3 4 4 5 5 5 5 5 7 2 1 1 3 1 7 7 1 1
7981372.99 9 13 15 16 16 16 16 17 17 17 16 17 5 2 2 6 1 17 11 1 1

Table 4.3: Results of searches, for various choices of B, for CTIDH pa-
rameters with at least 2256 keys for the CSIDH-512 prime. See text for
description.

4.2 CTIDH: faster constant-time CSIDH 83

the performance of a full C implementation also resolves the concerns raised
by using multiplications as a predictor of performance, such as concerns
that some subroutines could be difficult to handle in constant time and that
improved multiplication counts could be outweighed by overhead.

The software is freely available at https://ctidh.isogeny.org/. This
section describes the software. Section 4.2.8 reports the software speeds and
compares to previous speeds.

4.2.7.1 Processor selection and field arithmetic

The original CSIDH paper reported clock cycles for variable-time CSIDH-
512 software on an Intel Skylake CPU core. Skylake is also the most common
CPU choice in followup papers on CSIDH software speed. We similarly focus
on Skylake to maximize comparability.

The original csidh-20180826 software from [49] included a small
assembly-language library for Intel chips (Broadwell and newer) to per-
form arithmetic modulo the CSIDH-512 prime. The same library has been
copied, with minor tweaks and generalizations to other primes, into various
subsequent software packages, including high-ctidh. Code above the field-
arithmetic level, decomposing isogenies into multiplications etc., are written
in C, so porting the software to another CPU is mainly a matter of writing an
efficient Montgomery multiplier for that CPU. Beware that each CPU will
have different cycle counts, and possibly a different ranking of algorithmic
choices.

The velusqrt-asm software from [19] includes an adaptation of the same
library to CSIDH-1024. The sqale-csidh-velusqrt software from [54] in-
cludes adaptations to larger sizes, all automatically generated by a code gen-
erator that takes p as input. The high-ctidh package includes a similar code
generator, with some small improvements in the details: for example, we use
less arithmetic for conditional subtraction, and we avoid cmov instructions
with memory operands out of concern that they could have data-dependent
timings.

4.2.7.2 Computing one isogeny

The middle layer of high-ctidh computes an ℓ-isogeny for one prime ℓ; it
also includes auxiliary functions such as multiplying by the scalar ℓ. We
built this layer as follows.

We started with the xISOG function in velusqrt-asm. As in csidh-

20180826, this function takes a curve and a point P of order ℓ, and returns
the corresponding ℓ-isogenous curve. It also takes a point T , and returns
the image of that point under the isogeny.

We extended the function interface to take lower and upper bounds on
ℓ—the smallest and largest prime in the batch containing ℓ—and we modified
the software to take time depending only on these bounds, not on the secret

https://ctidh.isogeny.org/

84 Chapter 4: Constant-time Implementation

ℓ. The Matryoshka-doll structure of the computation (see Section 4.2.5.5)
meant that very little code had to change. Each loop to ℓ is replaced by
a loop to the upper bound, with constant-time conditional selection of the
results relevant to ℓ; and ℓ is replaced by the lower bound as input to the√

élu parameter selection. An upper bound was used the same way in [23];
the use of the lower bound for a Matryoshka-doll

√
élu is new here.

We reused the automatic
√

élu parameter-tuning mechanisms from
velusqrt-asm. These mechanisms offer the option of tuning for multiplica-
tion counts or tuning for cycles. Since most CSIDH-related papers report
multiplication counts while fewer report cycles, we chose to tune for multi-
plication counts for comparability, but this makes only a small difference:
cycle counts and multiplication counts are highly correlated.

We made more changes to incorporate known optimizations, including
an observation from [23] regarding the applicability of multiexponentiation,
and an observation from [3] regarding reciprocal polynomials. Computing a
587-isogeny and pushing a point through takes 2108 multiplications in this
software (counting squarings as multiplications); for comparison, [3] took
3.4% more, and velusqrt-asm took 8.9% more.

More importantly for the high-level algorithms, we extended the inter-
face to allow an array of points T to be pushed through the isogeny—e.g.,
two or zero points rather than one. We also incorporated shorter differential
addition chains, as in [51], for scalar multiplications, and standard addition
chains for the constant-time exponentiation inside Legendre-symbol compu-
tation.

There would be marginal speedups from tuning the
√

élu parameters
separately for each number of points. Taking parameters (6,3) for 0 points
instead of (0,0) saves 2 out of 328 multiplications for ℓ = 79; 2 out of 344
multiplications for ℓ = 83; and 8 out of 368 multiplications for ℓ = 89.
Parameter adjustments also save 3 multiplications for 0 points for each
ℓ ∈ {557,587,613}. However, we did not find such speedups for most primes,
and we did not find such speedups for the much more common case of 2
points.

4.2.7.3 Computing the action

The top layer of high-ctidh is new, and includes the core CTIDH algorithms
described earlier in this paper. The key space is KN,m, allowing any vector
with 1-norm at most m1 for the first N1 primes, 1-norm at most m2 for
the first N2 primes, etc. Constant-time generation of a length-Ni vector of
1-norm at most mi works as follows:

• Generate Ni +mi uniform random b-bit integers.

• Set the bottom bit of each of the first Ni integers, and clear the bottom
bit of each of the last mi integers.

4.2 CTIDH: faster constant-time CSIDH 85

• Sort the integers. (We reused existing constant-time sorting software
from [16].)

• If any adjacent integers are the same outside the bottom bit, start
over. (Otherwise the integers were distinct outside the bottom bit, so
sorting them applies a uniform random permutation.)

• Extract the bottom bit at each position. (This is a uniform random
bit string of length Ni +mi with exactly Ni bits set.)

• Consider the entries as integers. Add the first entry to the second,
then add the resulting second entry to the third, etc. (Now there are
maybe some 0s, then at least one 1, then at least one 2, and so on
through at least one Ni.)

• Count, in constant time, the number e0 of 0, the number e1 of 1, and
so on through the number eNi−1 of Ni − 1. (These tallies add up to at
most Ni +mi − 1, since the number of Ni was not included. Each of
e1, . . . , eNi−1 is positive, and e0 is nonnegative.)

• Subtract 1 from each of e1, . . . , eNi−1. (Now e0, . . . , eNi−1 is a uniform
random string of Ni nonnegative integers with sum at most mi.)

• Generate a uniform random Ni-bit string s0, . . . , sNi−1.

• Compute, in constant time, whether any j has sj = 1 and ej = 0. If so,
start over.

• Replace each ej with −ej if sj = 1.

As required by the constant-time property, the two rejection steps in this
algorithm are independent of the secrets produced as output. The first rejec-
tion step is very unlikely to occur when b is chosen so that 2b is on a larger
scale than (Ni +mi)

2. The second rejection step occurs more frequently.
Sign variations for vectors of Hamming weight k contribute 2k by Lemma 1
and thus the rejection correctly happens more frequently for smaller k.

In the case Ni > mi, high-ctidh saves time by skipping (in constant
time) the sj = 1 rejection test for the first Ni −mi values of j having ej = 0.
There are always at least Ni − mi such values of j. This increases each
acceptance chance by a factor 2Ni−mi , preserving uniformity of the final
output.

Once a private key is generated, the action is computed by a series of
restricted square-free ABs. As in Section 4.2.4, the first AB handles one
prime from each batch, the next AB handles one prime from each batch
that might have something left to do, etc.

Within each AB, Elligator is used twice to generate two independent
points; see Appendix. Specifically, Elligator is used to generate a point

86 Chapter 4: Constant-time Implementation

on the first curve EA: a point in ẼA(Fp) if the first isogeny has negative
sign, otherwise in EA(Fp). This point is pushed through the first isogeny.
Elligator is then used again to generate an independent point on the second
curve EA′ : a point in ẼA′(Fp) if the first isogeny had positive sign, otherwise
in EA′(Fp). Both choices are secret. These two points (T0, T1) are then
pushed through subsequent isogenies as in Algorithm 10, except that no
points are pushed through the last isogeny and only one point is pushed
through the isogeny before that. The AB thus pushes 1,2,2,2, . . . ,2,2,2,1,0
points through isogenies. The software permutes the b ≤ B batches in the
AB to use primes ℓb−1, ℓb−3, ℓb−4, . . . , ℓ1, ℓb−2, ℓb in that order.

Each AB selects one prime from each batch in the block and tries to
compute an isogeny of total degree D, the product of the selected primes;
D = r′ in Algorithm 10. Each point is multiplied by 4 and then by all primes
outside D immediately after the point is generated by Elligator, so that
the order of the point divides D. There are two types of primes outside D
(compare Steps 2 and 3 of Algorithm 10):

• The batches in the AB are public. Primes outside these batches are
publicly outside D.

• Primes that are inside the batches in the AB, but that are not the
secretly selected prime per batch, are secretly outside D.

For scalar multiplication by a product of secret primes, [23] uses a Mont-
gomery ladder, with the number of ladder steps determined by the maximum
possible product. For public primes, [51] does better using a precomputed
differential addition chain for each prime. Our high-ctidh software also
uses these chains for secret primes, taking care to handle the incompleteness
of differential-addition formulas and to do everything in constant time. The
primes in a batch usually vary slightly in chain length, so the software always
runs to the maximum length.

Each ℓ-isogeny then clears ℓ from the order of the point that was used to
compute the isogeny. As in line 14 of Algorithm 10, the software multiplies
the point by ℓ anyway (again using a constant-time differential addition
chain), just in case this was a dummy isogeny, i.e., there was secretly nothing
left to do in the batch. This extra scalar multiplication could be merged
with the isogeny computation, but the

√
élu structure seems to make this

somewhat more complicated than in [136], and the extra scalar multiplication
accounts for only about 3% of the CSIDH-512 computation. The other point
is also multiplied by ℓ.

Recall that an AB successfully handling a batch is a public event, visible
in timing: it means that a (real or dummy) ℓ-isogeny is computed now for
some ℓ in the batch, publicly decreasing the maximum 1-norm of the batch.
This event occurs with probability 1−1/ℓi,1, where ℓi,1 is the smallest prime
in the batch containing ℓ = ℓi,j . As in Section 4.2.5.4, the software creates

4.2 CTIDH: faster constant-time CSIDH 87

this event exactly when there is a conjunction of a natural success and an
artificial success. A natural success, probability 1− 1/ℓ, means that cofactor
multiplication produces a point of order ℓ rather than order 1. An artificial
success, probability γ = (1 − 1/ℓi,1)/(1 − 1/ℓ), is determined by a γ-biased
coin toss.

One obvious way to generate a γ-biased coin is to (1) generate a uniform
random integer modulo ℓi,1(ℓ − 1) and (2) compute whether the integer is
smaller than ℓ(ℓi,1 − 1). The second step is easy to do in constant time. For
the first step, the software generates a uniform random 256-bit integer and,
in constant time, reduces that modulo ℓi,1(ℓ − 1); the resulting distribution
is indistinguishable from uniform. One could instead use rejection sampling
to compute a uniform random integer modulo ℓi,1M , where M is the least
common multiple of ℓ − 1 across primes ℓ in the batch, and then reduce the
integer modulo ℓi,1(ℓ − 1), to obtain an exactly uniform distribution; the
reason to use M here rather than just one ℓ− 1 is to avoid having the secret
ℓ influence the rejection probability.

4.2.7.4 Automated constant-time verification

We designed and analyzed every step of the CTIDH algorithm to be constant
time, leaking nothing about the input through timing; this is the basis for
our claim that the algorithm is in fact constant time. We also designed and
reviewed every new line of code in high-ctidh to be constant time, and
reviewed every line of reused code for the same property; this is the basis
for our claim that the software is in fact constant time. These analyses are
complete—but, as in most papers on constant-time algorithms, are entirely
done by hand, raising the question of what protections there are against
human error.

For extra assurance, we designated an internal auditor to use automated
tools to verify the constant-time claims. This subsection is an audit report
to support external auditing. This report describes what the tools verified,
describes various limitations of this verification, and describes various steps
that the auditor took to compensate for those limitations.

From a risk-management perspective, a timing leak in high-ctidh would
have to be at the intersection of (1) human error in this paper’s manual
analysis and (2) limitations of the automated verification. One might hope
for automated verification without any limitations, eliminating the need for
manual analysis (assuming correctness of the verification tools), but one
risk identified below is beyond the current state of the art in automated
verification. The automated verification is nevertheless useful in reducing
risks overall.

An automated test using valgrind. There is a standard tool, val-

grind [151], that runs a specified binary, watching each instruction for mem-

88 Chapter 4: Constant-time Implementation

ory errors—in particular, branches and array indices derived from undefined
data. If secret data in cryptographic software is marked as undefined then
simply running valgrind will automatically check whether there is any data
flow from secrets to branches and array indices; see, e.g., [121]. See also [107]
for a survey of related tools.

Because valgrind works at the binary level, this analysis includes any
optimizations that might have been introduced by the compiler. A compiler
change could generate a different binary with timing leaks, but valgrind is
fast enough to be systematically run on all compiled cryptographic software
before the software is deployed.

The auditor wrote a simple checkct program using high-ctidh to per-
form a full CSIDH key exchange; this program is included in the high-ctidh
package. For example, running valgrind ./checkct512default takes un-
der 30 seconds on a 3GHz Skylake core, where checkct512default per-
forms a full CSIDH-512 key exchange. The underlying randombytes func-
tion marks all of its output as undefined, so valgrind is checking for any
possible data flow from randomness to branches or to array indices. For each
size, valgrind completes successfully, indicating that there is no such data
flow.

Limitations of the automated test, and steps to address the limita-
tions. The following paragraphs ask, from the auditor’s perspective, what
could have been missed by this automated test—for example, the auditor asks
what would happen if private keys were actually generated by OpenSSL’s
RAND_bytes rather than randombytes. Everything is covered by the paper’s
manual analysis—for example, we had already checked that all code was gen-
erating all randomness via randombytes—but the question addressed here
is the level of extra assurance provided by the automated analysis.

If the code generates randomness such as private keys via RAND_bytes

rather than randombytes, then private keys will not be marked as undefined,
so valgrind will not track data flow from private keys to branches or to array
indices. To address this, the auditor skimmed high-ctidh to check the (very
limited) set of C library functions being used, and double-checked the list of
functions output by nm checkct512default.

If private keys are actually deterministic then they will not be marked
as undefined. To address this, the auditor added a step to checkct to mark
Alice’s private key as undefined before Alice handles Bob’s public key. The
auditor also checked examples of private keys and saw them varying.

The valgrind analysis is dynamic, tracing through one run of code.
Perhaps CSIDH-1024 triggers code paths that are not used by CSIDH-512
and that leak secret data. To address this, the auditor tried all sizes of
interest.

Different runs could still follow different code paths because of the de-
classification described below. To address this, the auditor tried many runs

4.2 CTIDH: faster constant-time CSIDH 89

of each size, but there is still a risk that all of the runs missed some code
path. In theory it should be possible to combine valgrind with static code-
coverage analysis for binaries that follow standard calling conventions, but
as far as we know no tools are available for this. There are tools for static
constant-time analysis of C code and binaries [106], and those tools could
be applied to a modified version of high-ctidh that replaces the assembly-
language portions with reference C code.

The valgrind analysis checks that all array indices and all branch con-
ditions are defined, but does not check that division inputs are defined.
Division instructions take variable time in most CPUs, and should not be
modeled as taking constant time. To address this, the auditor skimmed the
assembly-language code for any use of division instructions, and skimmed
the C code for any operations likely to be compiled into division instructions.
Patching valgrind to limit the set of acceptable instructions would reduce
risks here.

Finally, the high-ctidh package has six crypto_declassify lines ex-
plicitly marking certain pieces of data as defined, meaning that valgrind

allows branches and array indices derived from that data. Perhaps this de-
classification leaks secrets. This is the most important risk, the risk that
would require advances in automated verification to address.

Five of the six lines are in rejection-sampling loops: one in generating
uniform random integers modulo p (rejecting numbers ≥p), two in Elligator
(rejecting random numbers 0,1,−1), and two in the subroutine described
above to generate vectors of bounded 1-norm. The sixth, and the most wor-
risome, declassifies the success of a batch in an AB. Analyzing the safety of
this declassification requires analyzing everything that influences the success
probability, including

• the logic concluding that the natural failure probability of generating
a curve point of order ℓi,j is exactly 1/ℓi,j ,

• the coin toss artificially increasing the failure probability to exactly
1/ℓi,1, and

• the use of Elligator as a substitute for uniform random points, assuming
(as previously conjectured; see Appendix) indistinguishability of the
point orders.

We again emphasize that all of this analysis is included in this paper. The
challenge for the future is to automate the analysis.

4.2.8 Software speeds

This section reports various measurements of the high-ctidh software
from Section 4.2.7, and compares the measurements to previous speeds for
constant-time CSIDH.

90 Chapter 4: Constant-time Implementation

4.2.8.1 Selecting a CSIDH size and collecting performance data

For comparability to previous speed reports, we focus here on CSIDH-512
with a key space of 2256 vectors. After some searching we took the (N,m)
shown for B = 14 in Figure 4.3. This (N,m) has approximately 2256.009

keys. Our cost calculator claimed that this (N,m) would use approximately
437986 multiplications on average.

We chose parameters a and c, and performed a different action compu-
tations for each of c different private keys on a 3GHz Intel Xeon E3-1220
v5 (Skylake) CPU with Turbo Boost disabled. This CPU does not support
hyperthreading, and to limit noise we used only one core. For each of the
ac computations, we recorded a cycle count, a total multiplication count in-
cluding squarings, a separate count of squarings, and a total addition count
including subtractions. We also tracked, for each key and each batch of
primes, the success probability of that batch in ABs for the computations
for that key.

Choosing c = 65, as in [19], and a = 16383 meant that experiments com-
pleted quickly, half a day on one core. We did not detect any deviations from
the null hypothesis that the software performance is independent of the pri-
vate key. For example, as discussed below, the per-key success probability
of the batch having smallest prime ℓi,1 was not statistically distinguishable
from 1 − 1/ℓi,1.

One can easily justify spending further computer time on experiments.
Larger a or c would make the total statistics more robust. Larger a would
make the per-key statistics more robust. Larger c would be useful if there
were a set of, say, 1 in every 1000 keys that somehow leaked information
through timing. On the other hand, predictable CTIDH implementation
errors such as taking a coin with probability 1− γ rather than γ would have
been caught by our experiments.

4.2.8.2 Performance results for the selected CSIDH size

We use the standard notation M for multiplications not including squarings,
S for squarings, and a for additions including subtractions. One common
metric in the literature is (M,S,a) = (1,1,0), counting the total number
of multiplications while ignoring the costs of addition and ignoring possible
squaring speedups. Another common metric is (M,S,a) = (1,0.8,0.05).

Across all 1064895 experiments, the average cycle count was 125.53 mil-
lion, standard deviation 3.01 million. The average M was 321207, stan-
dard deviation 6621. The average S was 116798, standard deviation 4336.
The average a was 482311, standard deviation 9322. The average cost
in the (M,S,a) = (1,1,0) metric was 438006. The average cost in the
(M,S,a) = (1,0.8,0.05) metric was 438762.

For the first key in particular, the averages were 125.55 million, 321270,
116837, and 482399 respectively. The gaps between these per-key aver-

4.2 CTIDH: faster constant-time CSIDH 91

ages and the overall averages are +0.90%, +0.94%, +0.89%, +0.94%, respec-
tively, of a standard deviation, which is unsurprising for 16383 experiments
per key. The gaps for the next four keys are −0.61%, −0.58%, −0.56%,
−0.59%, −0.06%, −0.02%, −0.02%, −0.02%, −1.44%, −1.39%, −1.37%,
−1.39%, +0.09%, +0.20%, +0.19%, +0.20%, respectively, of a standard de-
viation. The per-batch success probability for the first key, divided by the
expected 1 − 1/ℓi,1, was 0.999670 for the first batch, 1.000785 for the sec-
ond batch, 0.999688 for the third batch, etc.; for the second key, 1.001005,
0.998374, 1.000442, etc.; for the third key, 0.999304, 1.000131, 0.999820,
etc.; for the fourth key, 1.000476, 0.998714, 0.999224, etc.; for the fifth key,
1.001030, 1.001379, 1.000829, etc. The first-batch gaps from the predicted
average (namely 1) for the first 10 keys are −0.05%, +0.14%, −0.10%, +0.07%,
+0.15%, −0.35%, +0.13%, +0.01%, +0.12%, −0.21% of the predicted standard
deviation (namely

√
1/2); note that each of the 16383 experiments involves

around 20 first-batch tries.

To understand the performance results in more detail, we plotted the
distribution of all ac multiplication counts as the red curve in Figure 4.2.
We also computed, for each key, the distribution of the 16383 multiplication
counts for that key; there are five blue curves in Figure 4.2, showing the
minimum, first quartile, median, third quartile, and maximum of these 65
distributions. The green curves, with a larger spread, are like the blue curves
but are limited to the last 255 multiplication counts for each key.

Each curve has a stair-step shape. Another step upwards reflects another
AB in the computation, with (typically) two Elligator calls and two large
scalar multiplications. Any number of ABs can appear—for example, ℓ = 3
can fail again and again—but with exponentially low probability. One can
extrapolate the budget needed for an application that needs to run for a fixed
time (e.g., [23]) with a failure probability of, e.g., 2−100; in this scenario the
time would be lower if the smallest primes were left out of all batches.

It is unsurprising to see that the green curves have a spread of step
positioning on the scale of 10%, given that these curves consider only 255
experiments for each of the 65 keys. Similar comments apply to the blue
curves, with more experiments and a narrower spread. As a visual illustra-
tion that the spread is what one would expect, Figure 4.3 replaces the green
and blue curves from Figure 4.2 with random simulations based on the red
curve.

To gain more confidence that the distributions match, one could run more
experiments for each key and watch for a further narrowing from the blue
curves towards the red curve. Note that graphing the complete distributions
provides much more information than computing a single number such as a
t-statistic. Similar comments apply to cost metrics beyond multiplications:
for example, Figure 4.4 shows cycle counts, and one could similarly plot
other statistics such as the time of the first failed batch.

92 Chapter 4: Constant-time Implementation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

420000

440000

460000

480000

500000

520000

Figure 4.2: Distributions of costs in the (M,S,a) = (1,1,0) metric, i.e., total
multiplication counts. Five green curves: minimum, first quartile, median,
third quartile, and maximum of 65 per-key distributions of multiplication
counts in the last 255 experiments. Five blue curves: minimum, first quar-
tile, median, third quartile, and maximum of 65 per-key distributions of
multiplication counts in all 16383 experiments. Red curve: distribution of
multiplication counts in all experiments across all keys.

We also measured the cost of validation of a public key: median 14680
multiplications (after some easy speedups), around 4.09 million cycles. Note
that validation takes variable time: an invalid key fails much more quickly.
Finally, we measured the cost of generating a private key: typically under
1 million cycles, a negligible cost compared to generating the corresponding
public key.

4.2.8.3 Other CSIDH sizes

We also evaluated two further sizes, running 65 ⋅16383 experiments per size,
to illustrate performance variations in two different dimensions of the CSIDH
parameter space.

First, to understand the effect of having a larger list of ℓ, we switched
from the CSIDH-512 prime to the CSIDH-1024 prime, while keeping the

4.2 CTIDH: faster constant-time CSIDH 93

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

420000

440000

460000

480000

500000

520000

Figure 4.3: Simulation of Figure 4.2. The red curve is copied from Figure 4.2.
The green and blue curves replace the underlying per-key data with random
samples from the red curve.

same size of key space. After some searching we took CTIDH batch sizes

2,3,5,4,6,6,6,6,6,7,7,7,6,7,7,5,6,5,10,3,10,5,1, with bounds

2,4,5,5,6,6,6,6,6,6,6,6,6,6,6,5,5,3,6,2,6,2,0.

There are approximately 2256.066 keys.
Across all 1064895 experiments, the average cycle count was 469.52 mil-

lion, standard deviation 15.29 million. The average M was 287739, stan-
dard deviation 7420. The average S was 87944, standard deviation 4961.
The average a was 486764, standard deviation 10525. The average cost
in the (M,S,a) = (1,1,0) metric was 375683. The average cost in the
(M,S,a) = (1,0.8,0.05) metric was 382432.

As in [3, Tables 1 and 2], the CSIDH-1024 prime uses fewer multiplica-
tions than the CSIDH-512 prime (although, unsurprisingly, the larger prime
makes each multiplication slower). One might think that a larger list of ℓ
needs more multiplications, since one needs to clear more cofactors; but the
larger list also means that one can use smaller exponents for the same size
key space, and in our experiments this turns out to have a larger effect.

94 Chapter 4: Constant-time Implementation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.20

1.25

1.30

1.35

1.40

1.45

1e8

Figure 4.4: Same as Figure 4.2, but replacing multiplication counts with
cycle counts scaled by 108.

Second, to understand the effect of changing the size of the key space,
we took CSIDH-512 with only 2220 keys, as in the software from [54].
Specifically, we took CTIDH batch sizes 2,3,4,4,5,5,5,5,5,7,7,8,7,6,1,
with bounds 6,9,11,11,12,12,12,12,12,12,12,12,8,6,1. There are approx-
imately 2220.004 keys. This option is labeled “511” in high-ctidh.

Across all 1064895 experiments, the average cycle count was 89.11 mil-
lion, standard deviation 2.37 million. The average M was 228780, stan-
dard deviation 5186. The average S was 82165, standard deviation 3428.
The average a was 346798, standard deviation 7344. The average cost
in the (M,S,a) = (1,1,0) metric was 310945. The average cost in the
(M,S,a) = (1,0.8,0.05) metric was 311852.

4.2.8.4 Comparisons

There have been several previous speed reports [136, 154, 51, 104, 56, 3, 54]
for constant-time CSIDH. CSIDH-512 with a key space of 2256 vectors is
almost always included, and for this size the lowest multiplication count we
have found in the literature is 789000: this is from [3, Table 1, “hvelu”,
“OAYT-style”], which reports 624000M + 165000S + 893000a. All Skylake

4.2 CTIDH: faster constant-time CSIDH 95

cycle counts we have found are above 200 million. The high-ctidh speeds
are much faster, and have the added feature of constant-time verification
using valgrind.

Sometimes the latest software speeds are not fully reflected in the rele-
vant papers, so we downloaded the latest versions of csidh_withstrategies
(dated July 2020) from [56] and sqale-csidh-velusqrt (dated December
2020) from [54], and ran their benchmarking tools—with one modification to
change the number of experiments (“its”) from 1024 to 65536—on the same
Skylake machine that we had used for measuring high-ctidh. Some care is
required in comparisons, for at least three reasons: first, some tools report
the time for an action plus key validation; second, different benchmarking
frameworks could be measuring different things (e.g., our impression is that
the costs of Elligator were omitted from the multiplication counts reported
in [3]); third, the 512-bit parameters in sqale-csidh-velusqrt use a key
space of size only 2220, as noted above. Note that for CSIDH-1024 there is
even more variation in the literature in the size of key space; e.g., the original
CSIDH-1024 software from [49] used 5130 > 2300 keys.

The csidh_withstrategies tools, using BITLENGTH_OF_P=512

TYPE=WITHDUMMY_2 APPROACH=STRATEGY, reported averages of 218.42
million clock cycles (standard deviation 3.39 million), 691231a (standard
deviation 12554), 189377S (standard deviation 4450), and 665876M (stan-
dard deviation 7888); in other words, 855253 multiplications, or 851939
counting (M,S,a) = (1,0.8,0.05).

The sqale-csidh-velusqrt tools, using BITS=512 STYLE=wd2, re-
ported averages of 190.921 million cycles (standard deviation 4.32 million),
626000a (standard deviation 13000), 128000S (standard deviation 5000),
and 447000M (standard deviation 9000); i.e., 575000 multiplications. For
comparison, high-ctidh takes 89.11 million cycles (310945 multiplications)
as noted above, plus 4.09 million cycles for validation.

96 Chapter 4: Constant-time Implementation

p
u

b
p

ri
v

D
H

M
cy

c
M

S
a

1
,1
,0

1,
0
.8
,0
.0

5
51

2
2
2
0

1
8
9
.1

1
2
2
8
7
8
0

8
2
1
6
5

3
4
6
7
9
8

3
1
0
9
4
5

3
1
1
8
5
2

n
ew

51
2

2
2
0

1
1
9
0
.9

2
4
4
7
0
0
0

1
2
8
0
0
0

6
2
6
0
0
0

5
7
5
0
0
0

5
8
0
7
0
0

[5
4
]

51
2

2
2
0

2
9
3
.2

3
2
3
8
5
3
8

8
7
1
5
4

3
6
1
9
6
4

3
2
5
6
9
2

3
2
6
3
5
9

n
ew

51
2

2
5
6

1
1
2
5
.5

3
3
2
1
2
0
7

1
1
6
7
9
8

4
8
2
3
1
1

4
3
8
0
0
6

4
3
8
7
6
2

n
ew

51
2

2
5
6

1
—

6
2
4
0
0
0

1
6
5
0
0
0

8
9
3
0
0
0

7
8
9
0
0
0

8
0
0
6
5
0

[3
]

51
2

2
5
6

2
1
2
9
.6

4
3
3
0
9
6
6

1
2
1
7
8
7

4
9
7
4
7
6

4
5
2
7
5
2

4
5
3
2
6
9

n
ew

51
2

2
5
6

2
2
1
8
.4

2
6
6
5
8
7
6

1
8
9
3
7
7

6
9
1
2
3
1

8
5
5
2
5
3

8
5
1
9
3
9

[5
6
]

51
2

2
5
6

2
2
3
8
.5

1
6
3
2
4
4
4

2
0
9
3
1
0

7
0
4
5
7
6

8
4
1
7
5
4

8
3
5
1
2
1

[1
0
4
]

51
2

2
5
6

2
2
3
9
.0

0
6
5
7
0
0
0

2
1
0
0
0
0

6
9
1
0
0
0

8
6
7
0
0
0

8
5
9
5
5
0

[5
1
]

51
2

2
5
6

2
—

7
3
2
9
6
6

2
4
3
8
3
8

6
8
0
8
0
1

9
7
6
8
0
4

9
6
2
0
7
6

[1
5
4
]

51
2

2
5
6

2
3
9
5
.0

0
1
0
5
4
0
0
0

4
1
0
0
0
0

1
0
5
3
0
0
0

1
4
6
4
0
0
0

1
4
3
4
6
5
0

[1
3
6
]

10
24

2
5
6

1
4
6
9
.5

2
2
8
7
7
3
9

8
7
9
4
4

4
8
6
7
6
4

3
7
5
6
8
3

3
8
2
4
3
2

n
ew

10
24

2
5
6

1
—

5
5
2
0
0
0

1
3
3
0
0
0

9
2
4
0
0
0

6
8
5
0
0
0

7
0
4
6
0
0

[3
]

10
24

2
5
6

2
5
1
1
.1

9
3
1
0
1
5
4

9
9
3
7
1

5
2
1
4
0
0

4
0
9
5
2
5

4
1
5
7
2
1

n
ew

T
ab

le
4.

4:
C

o
m

p
ar

is
o
n

of
sp

ee
d

re
p

o
rt

s
fo

r
co

n
st

a
n
t-

ti
m

e
C

S
ID

H
a
ct

io
n

s.
T

h
e

C
S

ID
H

si
ze

is
sp

ec
ifi

ed
b
y

“
p

u
b

”
(5

1
2

fo
r

th
e

C
S

ID
H

-5
12

p
ri

m
e,

1
0
2
4

fo
r

th
e

C
S

ID
H

-1
0
2
4

p
ri

m
e)

a
n

d
“
p

ri
v
”

(k
w

h
er

e
p

ri
va

te
ke

y
s

a
re

ch
o
se

n
fr

o
m

a
sp

a
ce

o
f

ap
p

ro
x
im

at
el

y
2
k

ve
ct

or
s)

.
“
D

H
”

is
th

e
D

iffi
e–

H
el

lm
a
n

st
a
g
e:

“
1
”

fo
r

co
m

p
u

ti
n

g
a

p
u

b
li

c
ke

y
(c

o
m

p
u

ti
n

g
th

e
C

S
ID

H
ac

ti
on

),
“2

”
fo

r
co

m
p

u
ti

n
g

a
sh

a
re

d
se

cr
et

(v
a
li

d
a
ti

n
g

a
p

u
b

li
c

ke
y

a
n

d
th

en
co

m
p

u
ti

n
g

th
e

C
S

ID
H

a
ct

io
n

).
“
M

cy
c”

is
m

il
li

on
s

of
S

k
y
la

ke
cy

cl
es

(n
o
t

sh
ow

n
fo

r
P

y
th

o
n

so
ft

w
a
re

);
“
M

”
is

th
e

n
u

m
b

er
o
f

m
u

lt
ip

li
ca

ti
o
n

s
n

o
t

in
cl

u
d

in
g

sq
u

a
ri

n
g
s;

“
S

”
is

th
e

n
u

m
b

er
of

sq
u

a
ri

n
g
s;

“
a

”
is

th
e

n
u

m
b

er
o
f

a
d

d
it

io
n

s
in

cl
u

d
in

g
su

b
tr

a
ct

io
n

s;
“
1
,1
,0

”
a
n

d
“
1,

0.
8,

0.
0
5
”

a
re

co
m

b
in

at
io

n
s

of
M

,
S

,
an

d
a

.
S

ee
te

x
t

fo
r

m
ea

su
re

m
en

t
d

et
a
il

s
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s.

4.2 CTIDH: faster constant-time CSIDH 97

Finally, Table 4.4 summarizes the measurements listed above for high-

ctidh, for the software from [56], and for the software from [54]; the mea-
surements stated in [154, 51, 104, 3] for the software in those papers; and the
measurements stated in [51] for the software in [136]. For [104] the reported
processor is an Intel Core i7-7500k, which is Kaby Lake rather than Skylake,
but Kaby Lake cycle counts generally match Skylake cycle counts. The table
omits cycle counts for [3], which used Python, and [154], which used C but
had measurements affected by an unknown amount of Turbo Boost.

4.2.9 Appendix

The main body of this chapter focuses on protecting against timing attacks.
This appendix considers the extra challenge of protecting against faults.

Fault-injection attacks on constant-time CSIDH implementations are dis-
cussed in [51, 40]. Dummy operations are dangerous in this context: a “safe-
error attack” faults an operation and, if the output is unchanged, concludes
that the operation was a dummy operation. The literature thus aims for
“dummy-free” algorithms as a step towards protecting against faults. A
dummy-free constant-time group-action algorithm, based on the 2-point ap-
proach of [154], was proposed in [51]. This algorithm uses the modified key
space

K̃m ∶=
n

∏
i=1
{−mi,−mi + 2, . . . ,mi − 2,mi} with #K̃m =

n

∏
i=1
(mi + 1) .

The action evaluation computes ei isogenies of degree ℓi as usual, followed
by (mi− ∣ei∣)/2 isogenies in both the positive and negative directions. These
isogenies effectively cancel each other, and we obtain the same resulting
curve as when computing ∣ei∣ isogenies and mi − ∣ei∣ dummy isogenies. This
requires a total of mi isogenies per degree, as in [154], but mi has to be
chosen twice as large for the same size of key space, so overall the dummy
elimination costs a factor 2.

Algorithm 11 presents the dummy-free group action from [51] in terms
of dummy-free ABs—which are just the usual squarefree ABs from Sec-
tion 4.2.5, but with R = {−1,1} (so that no dummy isogenies are computed).
The similarity to Algorithm 7 is clear.

CTIDH adapts easily to a dummy-free variant. Algorithm 12, a gen-
eralization of Algorithm 11 for K̃m, uses restricted square-free ABs with
R = {−1,1} to handle keys in

K̃N,m ∶= {(e1, . . . , en) ∈ KN,m ∣ ∑
Ni

j=1 ∣ei,j ∣ ≡mi (mod 2) for all i} ,

a batching-oriented generalization of K̃m. We have
#K̃N,m =∏

B
i=1 Φ̃(Ni,mi), where Φ̃ sums Φ(Ni, j) − Φ(Ni, j − 1) for

j =mi, j =mi − 2, etc., analogously to Lemma 1.

98 Chapter 4: Constant-time Implementation

Algorithm 11: The dummy-free constant-time group action eval-
uation from [51].

Parameters: m = (m1, . . . ,mn)
Input: A ∈M, e = (e1, . . . , en) ∈ K̃m

Output: A′ with EA′ = (∏i l
ei
i) ⋆EA

1 (µ1, . . . , µn)← (m1, . . . ,mn) ;
2 while (µ1, . . . , µn) ≠ (0, . . . ,0) do
3 Let I = (I1, . . . , Ik) s.t. I1 < ⋯ < Ik and

{I1, . . . , Ik} = {1 ≤ i ≤ n ∣ µi > 0} ;
4 Choose e+ ∈ Zn

≥0 and e− ∈ Zn
≤0 such that e+i + e−i = ei and

∣e+i ∣ + ∣e
−
i ∣ =mi for 1 ≤ i ≤ n ;

5 for 1 ≤ i ≤ k do

6 ϵi ←

⎧⎪⎪
⎨
⎪⎪⎩

1 if e+Ii ≠ 0

−1 if e+I1 = 0

7 (A,f)← αR,I(A, (ϵ1, . . . , ϵk)) ; // Square-free AB

8 for 1 ≤ i ≤ k do
9 µIi ← µIi − fi ;

10 if ϵi = 1 then
11 e+Ii ← e+Ii − ϵi ⋅ fi
12 else
13 e−Ii ← e−Ii − ϵi ⋅ fi

14 return A

4.2 CTIDH: faster constant-time CSIDH 99

Algorithm 12: A constant-time group action for keys in K̃N,m

based on restricted squarefree ABs with R = {−1,1}.

Parameters: N , m, B
Input: A ∈M, e = (e1, . . . , en) ∈ K̃N,m

Output: A′ with EA′ = (∏i l
ei
i) ⋆EA

1 (µ1, . . . , µB)← (m1, . . . ,mB) ;
2 Choose e+ ∈ Zn

≥0 and e− ∈ Zn
≤0 s.t. e+i + e−i = ei and

∑
Ni

j=1(∣e
+
i,j ∣ + ∣e

−
i,j ∣) =mi for 1 ≤ i ≤ n ;

3 while (µ1, . . . , µB) /= (0, . . . ,0) do
4 Let I = (I1, . . . , Ik) s.t. I1 < ⋯ < Ik and

{I1, . . . , Ik} = {1 ≤ i ≤ B ∣ µi > 0} ;
5 for 1 ≤ i ≤ k do
6 Choose Ji such that e+Ii,Ji

/= 0 or e−Ii,Ji
/= 0 ;

7 ϵi ←

⎧⎪⎪
⎨
⎪⎪⎩

1 if e+Ii,Ji
/= 0

−1 if e+Ii,Ji
= 0

8 (A,f)← βR,I(A, (ϵ1, . . . , ϵk), J) ; // Restricted square-free

AB

9 for 1 ≤ i ≤ k do
10 µIi ← µIi − fi ;
11 if ϵi = 1 then
12 e+Ii,Ji

← e+Ii,Ji
− ϵi ⋅ fi

13 else
14 e−Ii,Ji

← e−Ii,Ji
− ϵi ⋅ fi

15 return A

100 Chapter 4: Constant-time Implementation

Batching improves dummy-free operation counts even more than it im-
proves constant-time operation counts. However, various subroutines inside
ABs need to be redone to avoid lower-level dummy operations or to double-
check, preferably at low cost, that the operations are being performed cor-
rectly. For example, the constant-time differential addition chains in our
software involve dummy differential additions; it should be possible to avoid
these by precomputing chains of the same length for all of the primes in a
batch. As another example, the Matryoshka-doll structure involves dummy
operations, and it would be interesting to explore adaptations of the coun-
termeasures of [40] to this context.

4.2.9.1 Elligator safety

The literature on algorithms for the CSIDH action frequently uses Elligator
outputs as cheaper replacements for the uniform random points generated
in these algorithms. This appendix analyzes the question of whether this is
secure. The conclusion, in a nutshell, is that it seems reasonable to conjecture
indistinguishability of the orders of Elligator outputs for large p from the
orders of uniform random points.

The cost of UniformRandomPoints. The obvious way to generate a
point in EA(Fp) is to generate a uniform random x ∈ Fp and compute y =

±
√
x3 +Ax2 + x, trying again if x3+Ax2+x is not a square. The distribution

is not exactly uniform, but one can easily adjust the procedure to correct this
(see [23, Section 4.1]), or simply accept the distribution as being statistically
indistinguishable from uniform.

The standard way to try to compute a square root, given that p ≡ 3
(mod 4), is to compute a (p + 1)/4 power. One more squaring then reveals
whether the input was a square. Generating a point in EA(Fp) in this way
takes two exponentiations on average.

Before trying to compute y one can check the Legendre symbol

(x
3+Ax2+x

p
). The square-root attempt will succeed if and only if the symbol is

not −1. This reduces two exponentiations to two Legendre-symbol computa-
tions and one exponentiation, saving time if a Legendre-symbol computation
is more than twice as fast as an exponentiation.

Similar comments apply to ẼA(Fp), producing an average UniformRan-

domPoints cost of four exponentiations, or four Legendre-symbol compu-
tations and two exponentiations. One can easily reduce the cost to three
exponentiations, or two Legendre-symbol computations and two exponenta-
tions, by taking the first x as generating a point in EA(Fp) in half of the

cases and generating a point in ẼA(Fp) in the other half of the cases.

Conventional algorithms for Montgomery-curve computations, including
the isogeny computations needed in CSIDH, work only with x and do not

4.2 CTIDH: faster constant-time CSIDH 101

need to inspect y. One can thus reduce the cost of UniformRandomPoints

to three Legendre-symbol computations on average.
Our high-ctidh software follows previous CSIDH work in computing a

Legendre symbol as a (p−1)/2 power, so the speed is the same as computing a
square root, but it would be interesting to investigate faster algorithms. One
can use blinding to guarantee constant-time Legendre-symbol computation:

• If x3 +Ax2 + x is 0, set a bit indicating this, and replace the 0 with 1.

• Multiply by ±r2 where r is a uniform random nonzero element of Fp.

• Use any Legendre-symbol algorithm.

• Adjust the output according to the 0 bit and the ± bit.

It would also be interesting to investigate whether the techniques of [24] can
be adapted to this context, avoiding the costs of blinding.

Elligators everywhere. The literature generally takes a different ap-
proach, using the Elligator 2 [21] map. This approach has the advantage of
using just one Legendre-symbol computation to generate a point in EA(Fp)

and, with no extra cost, a point in ẼA(Fp). The disadvantage is that each
point produced is distinguishable from uniform, covering only (p − 3)/2 out
of the p + 1 possible points. Perhaps the orders of these points are distin-
guishable from the orders of uniform random points.

Elligator was first used in the CSIDH context in [23], which analyzed
algorithms to compute CSIDH in superposition as a subroutine inside quan-
tum attacks. That paper mentioned experiments suggesting that Elligator
outputs have “failure chance almost exactly 1/ℓ” and that the higher-level
algorithms in [23] performed as predicted. However, the security question
for constructive CSIDH applications, namely the order-indistinguishability
question, did not arise in [23]. A measurable deviation in orders could easily
have avoided detection by the experiments in [23].

Elligator was first used for constructive CSIDH applications in [136] to
generate an element of EA(Fp). It was then used in [154] to generate an

element of EA(Fp) × ẼA(Fp). Subsequent CSIDH software has also used
Elligator. It is conceivable, however, that information about A is leaked via
the distribution of orders of the points that are generated by Elligator.

Elligator tracking. To directly address the order-distinguishability ques-
tion, we collected complete data for various small primes p. Specifically, for
each k ∈ {1,2,3,4,5}, we took the smallest prime p ≡ 3 (mod 8) for which
(p + 1)/4 factors into exactly k distinct primes.

For each p, we enumerated all A ∈M. For each (p,A), we enumerated
all Elligator outputs T0 ∈ EA(Fp) and computed the exact distribution of

102 Chapter 4: Constant-time Implementation

the order of [4]T0. We then compared this to the uniform model: the ex-
act distribution of orders for uniform random elements of Z/((p + 1)/4)Z.
Specifically, we computed the total-variation distance between these two
distributions; recall that the total-variation distance between D and E, the
conventional form of statistical distance, is ∑o ∣Do −Eo∣/2.

For example, for k = 1 and p = 11 = 4⋅3−1, the Elligator order distribution
for each A ∈ {0,5,6} is 100% order 3: if T0 is output by Elligator then
[4]T0 always has order 3. The uniform model is that orders 3 and 1 appear
with probability 2/3 and 1/3 respectively. The total-variation distance is
(∣1 − 2/3∣ + ∣0 − 1/3∣)/2 = 1/3.

For k = 2 and p = 59 = 4 ⋅3 ⋅5−1, the uniform model is that orders 15, 5, 3,
and 1 appear with probability 8/15, 4/15, 2/15, 1/15 respectively. Elligator
for A = 6 has probability 6/14, 6/14, 2/14, 0 respectively, with total-variation
distance 6/35 ≈ 0.171429. Elligator for A = 11 has a different distribution
from A = 6: probability 8/14, 4/14, 1/14, 1/14 respectively. There are 9
choices of A overall, with total-variation distances ranging from ≈0.0619048
to ≈0.171429, averaging ≈0.110582.

Seeing two different values of A with different distributions shows that
the result of replacing UniformRandomPoints with Elligator is not exactly
an atomic block. This does not end the security analysis: for security it
is enough to have something indistinguishable from an atomic block. If the
total-variation distance drops quickly enough to reach, e.g., 2−128 for p ≈ 2512,
then the Elligator orders are indistinguishable from uniform-point orders for
every A, and are thus indistinguishable from one A to another.

For p = 419 = 4 ⋅ 3 ⋅ 5 ⋅ 7− 1, there are 27 choices of A, with total-variation
distances averaging ≈0.0655745, ranging from ≈0.0357143 to ≈0.119780. For
p = 12011 = 4 ⋅ 3 ⋅ 7 ⋅ 11 ⋅ 13− 1, there are 195 choices of A, with total-variation
distances averaging ≈0.0135444, ranging from ≈0.0063736 to ≈0.0232127. For
p = 78539 = 4 ⋅3 ⋅5 ⋅7 ⋅11 ⋅17−1, there are 459 choices of A, with total-variation
distances averaging ≈0.00713331, ranging from ≈0.00353921 to ≈0.0115945.
For p = 1021019 = 4 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 − 1, there are 1905 choices of A, with
total-variation distances averaging ≈0.00493310, ranging from ≈0.00272376
to ≈0.00790233.

To see more information regarding the distributions, we inspected, for
each A with p = 419, the full distribution of orders of (4 times) Elligator
points in EA(Fp). The green curves in Figure 4.5 show the minimum, quar-
tiles, and maximum of the per-A distributions; for comparison, the red curve
shows the uniform model. Figure 4.6 is for p = 12011. The green curves are
closer to the red curve for p = 12011 than for p = 419.

Elligator simulators. Consider the following simulator, resampling from
the uniform model: for each A ∈M, generate a uniform random sequence of
(p − 3)/2 elements of [4]EA(Fp) ≅ Z/((p + 1)/4)Z, and compute the distri-
bution of orders of these elements.

4.2 CTIDH: faster constant-time CSIDH 103

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

20

40

60

80

100

Figure 4.5: For p = 419, distributions of orders of points [4]T0 in EA(Fp).
Red curve: the uniform model, choosing T0 uniformly at random from
EA(Fp). Five green curves: minimum, first quartile, median, third quartile,
and maximum of the per-A distributions when T0 is output by Elligator.

Obviously this simulator is not exactly Elligator. For example, Elligator
produces each element of [4]EA(Fp) at most 4 times. More fundamen-
tally, Elligator deterministically produces a particular distribution for each
A, while the simulator produces a new random choice each time. As an
extreme case, for p = 11, Elligator produces 100% order 3 as noted above,
whereas for each A ∈ {0,5,6} the simulator produces 100% 3 with probabil-
ity 16/34; 75% 3 and 25% 1 with probability 32/34; 50% 3 and 50% 1 with
probability 24/34; 25% 3 and 75% 1 with probability 8/34; and 100% 1 with
probability 1/34.

However, within the range of our experiments, this simulator produces
similar results to Elligator. Compare Figure 4.6 to Figure 4.7, which gives
an example of the simulator output for p = 12011.

A heuristic analysis of this simulator for arbitrary sizes of p proceeds as
follows. For each positive integer d dividing (p+1)/4, there are φ(d) elements
of order d in Z/((p + 1)/4)Z, where φ is Euler’s phi function. For example,
there is 1 element of order 1, and there are (ℓ1 − 1)⋯(ℓn − 1) elements of
order (p+ 1)/4 = ℓ1⋯ℓn. Order d thus occurs with probability 4φ(d)/(p+ 1).

104 Chapter 4: Constant-time Implementation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

500

1000

1500

2000

2500

3000

Figure 4.6: Same as Figure 4.6 but for p = 12011.

In general, if a trial succeeds with probability q, then the number S
of successes in N independent trials has average qN and standard de-
viation

√
q(1 − q)N , so the ratio (S − qN)/

√
q(1 − q)N (assuming 0 <

q < 1) has average 0 and standard deviation 1. The distribution of

(S−qN)/
√
q(1 − q)N rapidly approaches a normal distribution as q(1−q)N

increases. If the distribution were exactly normal then the half absolute
value ∣S −qN ∣/(2

√
q(1 − q)N) would have average

√
1/2π. One thus expects

the variation ∣S/N − q∣/2 to be approximately
√
q(1 − q)/2Nπ on average.

In particular, write Sd for the number of times that order d occurs among
(p − 3)/2 independent samples from the uniform distribution on Z/((p +
1)/4)Z. Then Sd has average qd(p − 3)/2, where qd = 4φ(d)/(p + 1), and

standard deviation
√
qd(1 − qd)(p − 3)/2. One expects the variation ∣2Sd/(p−

3) − qd∣ to be approximately
√
qd(1 − qd)/(p − 3)π on average.

Summing over d says that the total-variation distance is, on average,
approximately ∑d

√
qd(1 − qd)/(p − 3)π. This is at most ∑d

√
qd/(p − 3)π =

X/
√
(p − 3)π where X = ∑d

√
qd. Notice that X factors as ∏j(

√
1 − 1/lj +√

1/lj), which is easy to compute even when p is large. For example, for

the CSIDH-512 prime p, this product X is below 211, while 1/
√
(p − 3)π is

around 2−256.

4.2 CTIDH: faster constant-time CSIDH 105

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0

500

1000

1500

2000

2500

3000

Figure 4.7: Simulation of Figure 4.6. The red curve is copied from Figure 4.6.
For the green curves, the Elligator order distributions are replaced by random
samples from the red curve.

There are roughly
√
p choices of A, and they usually vary in total-

variation distance. For any particular d, one expects that there exists some
A with approximately

√
log p standard deviations in the probability that d

occurs: e.g., 19 standard deviations for the CSIDH-512 prime p (although
finding just 10 deviations would be a large computation). This effect is on a
smaller scale than X when (p + 1)/4 has many small prime factors: i.e., the
typical variation accumulated by many large divisors d is larger than occa-
sional variation for the largest divisor. One does not expect several standard
deviations to occur for several d simultaneously.

106 Chapter 4: Constant-time Implementation

p
#
E

lg
X

lg
H

lg
H

1
m

in
av

g
m

a
x

ra
ti

o
s

1
1

3
0.

4
8

−
1.

8
5

−
2.

4
1

−
1.

5
8

−
1.

5
8

−
1.

5
8

0
.6

8
1
.2

0
1
.2

0
1
.2

0
5
9

9
0.

9
0

−
2.

8
3

−
3.

1
2

−
4.

0
1

−
3.

1
8

−
2.

5
4

0
.8

2
0
.4

4
0
.7

8
1
.2

2
4
1
9

2
7

1.
2
9

−
3.

8
9

−
4.

0
7

−
4.

8
1

−
3.

9
3

−
3.

0
6

0
.8

9
0
.5

3
0
.9

7
1
.7

8
12

0
1
1

1
9
5

1.
5
0

−
6.

1
0

−
6.

2
6

−
7.

2
9

−
6.

2
1

−
5.

4
3

0
.9

0
0
.4

4
0
.9

3
1
.6

0
78

5
3
9

4
5
9

1.
8
9

−
7.

0
6

−
7.

1
6

−
8.

1
4

−
7.

1
3

−
6.

4
3

0
.9

4
0
.4

7
0
.9

5
1
.5

5
10

21
0
1
9

1
9
0
5

2.
2
0

−
8.

6
1

−
8.

6
7

−
9.

5
2

−
8.

6
6

−
7.

9
8

0
.9

6
0
.5

3
0
.9

6
1
.5

4

T
ab

le
4.

5:
H

eu
ri

st
ic

an
al

y
si

s
o
f

th
e

E
ll

ig
a
to

r
si

m
u

la
to

r
(s

ee
te

x
t)

co
m

p
a
re

d
to

a
ct

u
a
l

E
ll

ig
a
to

r
o
rd

er
d

is
tr

ib
u

ti
o
n

s.
“
#
E

”
:

n
u

m
b

er
of

ch
oi

ce
s

of
A

.
“
lg
X

”
:

lo
g
a
ri

th
m

b
a
se

2
o
f
X
=
∏

j
(√

1
−

1/
l j
+
√

1
/l

j
).

“
lg
H

”
:

lo
ga

ri
th

m
b

a
se

2
o
f
H
=

∑
d

√
q d
/(
p
−

3
)π
=
X
/√
(p
−

3)
π

.
“
lg
H

1
”
:

lo
g
a
ri

th
m

b
a
se

2
o
f
H

1
=
∑

d

√
q d
(1
−
q d
)/
(p
−

3
)π

.
“
m

in
”

a
n

d
“
av

g
”

a
n

d
“
m

a
x
”
:

lo
ga

ri
th

m
b

as
e

2
of

th
e

m
in

im
u

m
a
n

d
av

er
a
g
e

a
n

d
m

a
x
im

u
m

,
ov

er
A

,
o
f

th
e

to
ta

l-
va

ri
a
ti

o
n

d
is

ta
n

ce
b

et
w

ee
n

E
ll

ig
a
to

r
a
n

d
th

e
u

n
if

or
m

m
o
d

el
.

“r
at

io
s”

:
H

1
a
n

d
m

in
im

u
m

a
n

d
av

er
a
g
e

a
n

d
m

a
x
im

u
m

,
d

iv
id

ed
b
y
H

,
w

it
h

o
u

t
lo

g
a
ri

th
m

s.

4.2 CTIDH: faster constant-time CSIDH 107

To summarize, one expects all total-variation distances from the sim-
ulator to be close to X/

√
(p − 3)π. The ratios in Table 4.5 show that

the actual Elligator total-variation distances are close to X/
√
(p − 3)π for

p ∈ {11,59,419,12011,78539,1021019}.

Zero hazards. The original Elligator paper [21] did not define Elligator 2
for A = 0. The application of Elligator to CSIDH attacks in [23] suggested
handling A = 0 by precomputing a point of full order, or, alternatively,
replacing the initial A/(r2 − 1) with r when A = 0.

Our CTIDH software (see Section 4.2.7) replaces the initial A/(r2 − 1)
with 1/(r2 − 1) when A = 0. For constant-time projective computations this
seems slightly more efficient than replacing A/(r2 − 1) with r. We included
this handling of A = 0 in the computations described above of the total-
variation distance.

Beware that the alternative of precomputing a point of full order would
not generally be safe in constructive applications. This precomputation elim-
inates failure cases for A = 0, making A = 0 easily distinguishable from other
values of A via timing. An attacker that guesses the isogenies used in the
victim’s first AB, and provides a fake public key that is taken to 0 by those
isogenies, can check this guess by watching timings of the victim’s second
AB. Once the attacker has enough confidence regarding the first isogenies,
the attacker can move on to guessing the isogenies used in the victim’s sec-
ond AB. The attacker continues in this way to adaptively target the victim’s
full private key. This adaptive timing attack breaks [136, Section 5.3, sec-
ond paragraph]. On the other hand, always using a large enough number of
iterations to reach a negligible failure probability, as in [23], would stop this
attack.

One Elligator, or two? The order-distinguishability question for orders
in ẼA(Fp) is equivalent to the order-distinguishability question for orders in
E−A(Fp), so it does not need to be analyzed separately. However, a different
security question arises if a single UniformRandomPoints call is replaced with
a single Elligator call, as in [154] and subsequent constant-time CSIDH work.
It is conceivable, for example, that the resulting element of EA(Fp)×ẼA(Fp)
has a measurable correlation between 3 dividing the order in the EA(Fp) part

and 5 dividing the order in the ẼA(Fp) part, even if the order in each part
separately is indistinguishable from uniform.

Our high-ctidh software simplifies the security analysis by using Elli-
gator once to generate an element of EA(Fp), and using Elligator again to

generate an independent element of ẼA(Fp). It is not clear that this is a
slowdown: independently generating two points lets the software save the
cost of pushing one of the two points through an isogeny, and Legendre-
symbol computations could be fast enough to justify this purely from a

108 Chapter 4: Constant-time Implementation

speed perspective. (Note that if Legendre-symbol computations have low
enough cost then it is easy to argue for incurring the slowdown of using two
Legendre-symbol computations on each curve to generate uniform random
points, skipping Elligator and further simplifying the security analysis.)

On the other hand, a single Elligator call could be best for speed, and is
used in several previous papers. So we also studied the joint distribution of
EA(Fp) × ẼA(Fp) orders.

For A = 0, the Elligator extensions mentioned above produce outputs of
the form ((x, y), (−x, iy)). The “distortion map” from (x, y) to (−x, iy) is
compatible with elliptic-curve addition, so it preserves the order of points.
This reduces the security question for E0(Fp)× Ẽ0(Fp) to the security ques-
tion for E0(Fp), which was addressed above.

For nonzero A, our computations did not detect any such correla-
tions. We instead compared the pair of orders to a uniform-pair model,
namely the orders of two independent uniform random elements T0, T1 of
Z/((p+1)/4)Z. We found total-variation distance averaging ≈0.312619 (max-
imum ≈0.358730) for p = 59, ≈0.207722 (maximum ≈0.260199) for p = 419,
≈0.0512755 (maximum ≈0.0678949) for p = 12011, and ≈0.0361776 (maxi-
mum ≈0.0416506) for p = 78539.

It is not surprising that the distance from the joint distribution to the
uniform-pair model is generally larger than the distance from the single-point
distribution to the uniform model. There are many more possibilities for a
pair of orders than for a single order.

To quantify this, consider a joint-distribution simulator that resamples
from the uniform-pair model. If d1 and d2 are positive integers dividing
(p + 1)/4 then there are φ(d1)φ(d2) pairs of elements T1, T2 of orders d1, d2
respectively in Z/((p + 1)/4)Z. A heuristic analysis proceeds as before,
with qd replaced by qd1qd2 , and X replaced by X2, giving the estimate

X2/
√
(p − 3)π. This estimate is ≈0.263654 for p = 59, ≈0.164434 for p = 419,

≈0.0410512 for p = 12011, and ≈0.0277182 for p = 78539. If the actual joint-
Elligator distances remain close to X2/

√
(p − 3)π for all CSIDH primes p

then the distances are acceptably small for CSIDH-512.

5
Physical Attacks

5.1 Trouble at the CSIDH: Protecting CSIDH
with Dummy-Operations against Fault In-
jection Attacks

This chapter is for all practical purposes identical to the paper Trouble at the
CSIDH: Protecting CSIDH with Dummy-Operations against Fault Injection
Attacks [40] authored jointly with Matthias J. Kannwischer, Michael Meyer,
Hiroshi Onuki, and Marc Stöttinger, which was published at FDTC 2020.

5.1.1 Introduction

Isogeny-based cryptography is a promising candidate for quantum-resistant
schemes. The most popular schemes, SIDH (Supersingular Isogeny Diffie–
Hellman) and CSIDH (Commutative Supersingular Isogeny Diffie–Hellman),
offer key-exchange protocols with the smallest key sizes, but the worst per-
formance among all current post-quantum schemes. In contrast to SIDH,
CSIDH is non-interactive, and basically could be used as a drop-in replace-
ment for current applications of Diffie–Hellman or ECDH. However, it seems
that until now, isogeny-based PQC schemes have not received much atten-
tion in the implementation-attack literature [58]. Only few fault-injection
attacks on SIDH and more general investigations ([94, 180, 91]) have been
discussed and published in the community so far. In [51], fault-injection
attacks on a constant-time implementation of CSIDH have been discussed.
However, all previous publications only consider attacks on a theoretical
level and omit discussing a particular fault model, fault-attack method, and
fault-injection technique. To the best of the authors’ knowledge in none of
the publications the practical execution of fault-injection attacks has been
investigated. Therefore, this is the first work on practical evaluation on the
feasibility of fault attacks on an implementation of the CSIDH key-exchange
protocol.

109

110 Chapter 5: Physical Attacks

In this work we focus on CSIDH, for which there are currently two pro-
posals to design constant-time implementations. One approach uses dummy
computations to achieve time constantness ([136, 154, 51]), while the other
is dummy-free ([51]). The former approach is believed to be less secure
against fault attacks, but is twice as fast as the latter. In this work, we
evaluate practical fault attacks on the former approach, and present coun-
termeasures, leading to a relatively small slowdown by a factor of 1.07, which
yields a significantly better performance than the dummy-free alternative.

The contributions of this work are as follows: First, we discuss practi-
cal attacker models for fault attacks and side-channel assisted fault attacks
on constant-time CSIDH implementation with dummy isogenies. We then
simulate all discussed attack models and perform practical experiments with
low-budget attack equipment. Lastly, we evaluate the performance of the
proposed countermeasures in practice.

We place the code used for this work into the public do-
main; it is available at https://github.com/csidhfi/csidhfi and
https://doi.org/10.5281/zenodo.6900027. It includes the CSIDH
implementation with and without countermeasures, the attack-simulation
scripts, and attack scripts.

Remark 1. The majority of this work was done prior to the publication
of asymptotically faster isogeny formulas by Bernstein, De Feo, Leroux, and
Smith [19]. Some of our countermeasures rely on the structure of the isogeny
computations in the implementations [51, 136, 154]. Since this is significantly
altered in the formulas from [19], it is unclear whether they can be protected
by similar countermeasures. However, for small degrees the formulas used
in this work are still faster, and it is yet unclear for which threshold the new
formulas become faster in a constant-time implementation. Even if there are
no similar countermeasures for [19], one could design a hybrid implementa-
tion, where the small degrees use protected dummy computations, while the
larger degrees use the dummy-free approach.

5.1.2 Preliminaries

5.1.2.1 CSIDH

We focus on an algorithmic description of CSIDH here; for more background,
we refer to [49].

First, we define a prime of the form p = 4ℓ1⋯ℓn − 1, where ℓ1, . . . , ℓn
are small distinct odd primes, and work with supersingular elliptic curves
in Montgomery form EA ∶ y2 = x3 + Ax2 + x over F. Therefore, each such
curve contains points of orders ℓi for all 1 ≤ i ≤ n, which can be used as
input to compute an isogeny of degree ℓi, e.g. using the formulas of [62]. A
private key is given by a vector of integers (e1, . . . , en), where the entry ei
determines that ∣ei∣ isogenies of degree ℓi have to be computed, and the sign

https://github.com/csidhfi/csidhfi
https://doi.org/10.5281/zenodo.6900027

5.1 Protecting CSIDH with Dummy-Operations 111

of ei determines if an order-ℓi point on the current curve or its twist has to be
taken as the input. The entries are sampled from a small interval [−m,m] to
obtain an efficient computation. This so-called class group action evaluation
thus takes as input a curve E, computes the required chain of isogenies, and
outputs a different curve E′. Note that the order of computing the required
isogenies is not fixed, due to the commutativity of this action. In practice,
efficient algorithms for this class group action sample a point on the current
curve, and compute as many isogenies from this point as possible, thereby
requiring to push this point through each computed isogeny in this chain.
This can be seen in Algorithm 2 of [49].

The commutativity immediately allows us to set up a Diffie–Hellman-
style key exchange: Alice and Bob agree on an initial curve E0 and choose
private-key vectors. Both compute the respective class group action, and
obtain a public key EA resp. EB . Then, Alice repeats the computation
of her chain of isogenies with the starting curve EB , and Bob proceeds vice
versa with EA. Because of the commutativity, both parties then arrive at the
same curve EAB , which can be used as the shared secret. This key exchange
is non-interactive, and due to the efficient verification of public keys, allows
for static-static key exchange [49].

5.1.2.2 Isogenies

As shown by Costello and Hisil [62], for curves in Montgomery form, an
isogeny φ ∶ E → E′ of odd degree ℓ = 2d + 1 can be computed from the
following formulas. Let K ∈ E be a point of order ℓ, and denote by (Xi ∶ Zi)
the projective coordinates of the point [i]K. Then

φ ∶ (X ∶ Z)↦

⎛

⎝
X (

d

∏
i=1
(X −Z)(Xi +Zi) + (X +Z)(Xi −Zi))

2

∶

Z (
d

∏
i=1
(X −Z)(Xi +Zi) − (X +Z)(Xi −Zi))

2
⎞

⎠
. (5.1)

The curve parameter a′ = (A′ ∶ C ′) of E′ can be computed by formulas
by Meyer and Reith [137], exploiting the birational equivalence to a twisted
Edwards curve:

(A′ ∶ C ′) = (2 ⋅ ((A + 2)ℓπ8
+ + (A − 2)ℓπ8

−) ∶

(A + 2)ℓπ8
+ − (A − 2)ℓπ8

−) , (5.2)

112 Chapter 5: Physical Attacks

where

π+ =
d

∏
i=1
(Xi +Zi) and π− =

d

∏
i=1
(Xi −Zi).

Dummy isogenies

As suggested by Meyer and Reith [137], constant-time algorithms of CSIDH
often use dummy isogenies, since otherwise the running time is correlated
to the secret key, which specifies the number of isogenies to be computed.
These dummy computations perform the same instructions as real isogeny
computations, but discard the results. Thus, they allow for a fixed number
of isogeny computations, independent from the respective private key.

In order to speed up computations, dummy isogenies are designed to
compute [ℓ]P for the input point P . This has to be done, since for a real
isogeny of degree ℓ, the order of P loses the factor ℓ by being pushed through.
Therefore, a dummy isogeny would require a subsequent multiplication [ℓ]P ,
which is prevented by performing this computation inside the dummy algo-
rithm. To this end, a dummy isogeny swaps the input points K (kernel
point) and P (point to be evaluated), to compute [(ℓ− 1)/2]P in the kernel
computation part. Then two further differential additions suffice to compute
[ℓ]P . However, this method requires to perform these two further additions
in a real isogeny as well, and discard their results, in order to achieve a
constant-time behavior.

Figure 5.1 and Figure 5.2 show the different computation blocks that are
contained in the degree-ℓ isogeny algorithm. For real and dummy isogenies,
the green blocks are necessary computations in order to produce a valid
output, while the red blocks entirely consist of dummy computations, whose
results are discarded. Note that these figures do not show conditional swaps,
which are necessary to avoid conditional branches based on the private key.
We refer to [136] and the accompanying implementation for more details.

5.1.2.3 Constant-time algorithms

Meyer, Campos, and Reith (MCR) [136] pointed out that in addition to
the variable number of isogenies, also the sign distribution of the key ele-
ments may leak information through the running time. Thus, they proposed
a constant-time algorithm of CSIDH by using dummy isogenies, and by
changing the secret key intervals from [−m,m]n to [0,2m]n. As a result, for
any secret key the performance is the same as for the action of the integer
vector (2m, . . . ,2m). This cost is about twice as much as that of the action
of (m, . . . ,m), which is the worst case in the variable-time algorithm. Fur-
ther, they proposed several optimizations, such as the batching technique
SIMBA or the usage of the point sampling method Elligator [21], which was
first used in the context of CSIDH in [23], and obtain a speed-up factor of
roughly 2.

5.1 Protecting CSIDH with Dummy-Operations 113

K,P
compute kernel:

[2]K, ..., [ℓ−12]K

compute a′

compute φ(P)

compute [ℓ]K

a′

φ(P)

Figure 5.1: Real isogeny

K,P
compute kernel:

[2]P, ..., [ℓ−12]P

compute a′

compute φ(P)

compute [ℓ]P
[ℓ]P

a

Figure 5.2: Dummy isogeny

Onuki, Aikawa, Yamazaki, and Takagi (OAYT) [154] proposed an idea
for mitigating the increase of the computational cost due to the key interval
[0,2m]. By keeping two points P0 ∈ E[π − 1] and P1 ∈ E[π + 1] in each step
in the algorithm, where π denotes the Frobenius endomorphism, one can
compute isogenies for positive signs and negative signs of a secret key in
the same loop. By always choosing the point Ps that suits the sign of ei
for computing the kernel generator of an ℓi-isogeny, the correlation between
running time and sign distribution is eliminated. Thus, this method allows
for the use of the secret key intervals [−m,m]n, and therefore halves the
number of total isogenies at the cost of an additional point evaluation
per isogeny. We describe their algorithm in Algorithm 13. Note that, for
the sake of simplicity, optimizations such as SIMBA are not described in
Algorithm 13. We refer to [136, 154] for more details.

Cervantes-Vázquez, Chenu, Chi-Domı́nguez, De Feo, Rodŕıguez-
Henŕıquez, and Smith (CCCDRS) [51] obtained a speedup for the MCR and
OAYT implementations by using twisted Edwards curves. Further, they
proposed a dummy-less implementation in order to improve the resistance
against fault attacks, at the cost of a slowdown by a factor of 2.

114 Chapter 5: Physical Attacks

Algorithm 13: Constant-time class group action

1 Set e′i =m − ∣ei∣ for i = 1, . . . , n.
2 while some ei ≠ 0 or e′i ≠ 0 do
3 Set S = {i ∣ ei ≠ 0 or e′i ≠ 0}.
4 Set k =∏i∈S ℓi.
5 Generate P0 ∈ EA[π − 1] and P1 ∈ EA[π + 1] by Elligator.
6 Let P0 ← [(p + 1)/k]P0 and P1 ← [(p + 1)/k]P1.
7 for i ∈ S do
8 Set s the sign bit of ei.
9 Set K = [k/ℓi]Ps.

10 Let P1−s ← [ℓi]P1−s.
11 if K ≠∞ then
12 if ei ≠ 0 then
13 Compute φ ∶ EA → EB with kerφ = ⟨K⟩.
14 Let A← B, P0 ← φ(P0), P1 ← φ(P1), and

ei ← ei − 1 + 2s.
15 else
16 Compute dummy isogeny:
17 Let A← A, Ps ← [ℓi]Ps, and e′i ← e′i − 1.

18 Let k ← k/ℓi.

19 return A.

5.1.3 Attacker Models

The attacker we are modeling in this work is deploying safe-error analysis to
detect the dummy isogenies within CSIDH, i.e., he injects faults during the
computation of the CSIDH group action and observes if an occurring fault
impacts the shared secret. An adversary that can reliably skip or corrupt an
isogeny computation of a chosen degree at a chosen index can easily recover
the full secret key with a relatively small number of fault injections. However,
due to various sources of randomness during the execution, it is impossible to
always corrupt the intended operation and without side-channel information
an adversary cannot know which isogeny was affected. Therefore, we propose
three different attacker models with increasing capabilities to evaluate the
impact of the resulting attacks.

In general, we assume that an adversary is able to repeatedly trigger
an evaluation of the group action using the same secret key. The input
curve may be the same for all evaluations, but may also be different. As
CSIDH allows a static-static key exchange, this is likely how a key exchange
is implemented. The attacker is able to inject faults that will set variables

5.1 Protecting CSIDH with Dummy-Operations 115

to random values or skip instructions. An attacker is limited to observe
whether both parties obtained the same shared secret, e.g., by observing
failure later in the protocol. Expressed in a more formal way, this model
is the same as the second oracle from [91]. We propose the following three
attackers with increasing capabilities. Attacker 1 and Attacker 2 are limited
to fault injection, while Attacker 3 can also obtain additional side-channel
information.

• Attacker 1: Shotgun at the CSIDH. Our weakest adversary model
assumes that the attacker can reliably cause a fault during the compu-
tation of the CSIDH group action, but has no control over the location
of the fault. He can then observe how often this leads to a wrong
shared secret. This proportion of failures intuitively is depending on
the ratio of “real” vs. “dummy” isogenies. While this is a rather
weak adversary model, it nicely demonstrates the inherent problem of
dummy operations in the context of fault injection attacks.

The main limitation of Attacker 1 is that he has no control over the op-
eration that is affected. Since the isogeny computations make up about
42% of cycles during the group action on the Cortex-M4, the attacker
is likely to hit an isogeny computation relatively often. However, he
has no knowledge of the order of the faulty isogeny computation which
limits the information he can learn about the secret key.

• Attacker 2: Aiming at isogenies at index i. A slightly more
powerful adversary can target isogeny computations at positions of his
choice. This does not fully allow to target isogenies of a chosen degree,
as the isogenies may be evaluated out of order due to point rejections.
However, since the first evaluated isogenies have relatively large orders
ℓi, and the point rejection probability is 1/ℓi, the sequence of the first
isogenies is almost deterministic and the individual isogenies can be
targeted easily. We evaluate how many isogenies the adversary can
realistically attack in Section 5.1.4.

For all entries of the secret key with ei = 0, the injected fault will not
change the result, and an adversary immediately knows this part of the
secret key. For the remaining ei the adversary has reduced the search
space.

• Attacker 3: Aiming at isogeny computations and tracing the
order. Our most powerful attacker model complements attacker 2 by
additionally allowing the adversary to trace the faulty isogeny com-
putation to determine the degree of the isogeny that the fault was
injected into. Since the isogeny order determines the run-time of the
isogeny computation the order might be recovered from a power trace,
e.g., using Simple Power Analysis [119].

116 Chapter 5: Physical Attacks

22k 24k 26k 28k 30k 32k 34k
weighted sum of ei

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

%
 o

f i
ne

ffe
ct

iv
e

fa
ul

ts

Figure 5.3: Simulation results for Attack 1 using 100 random CSIDH512
secret keys. 500,000 faults are injected into random operations during the
group action.

One could imagine yet another adversary that is capable of setting certain
ei of the secret key to a chosen value. A possible attack would be as follows:
For each ei try all possible values and observe for which value the derived
shared secret is correct. For the CSIDH512 parameters proposed in [154],
this would require at most 882 successful fault injections for fully recovering
the secret key. This attack would also apply to dummy-free implementations
like [51]. Note, however, that this adversary is overly powerful especially
when assuming the low-cost fault injection equipment we are targeting in this
work. Therefore, we focus on more realistic fault models for the remainder
of this chapter which can be achieved using relatively cheap clock-glitching
equipment.

5.1.4 Simulation

To gain a better understanding of how many fault injections an adversary
would require to obtain a certain key space reduction or key recovery, we
simulate the three previously defined adversary models and mount practical
experiments on them.

5.1.4.1 Attack 1

For the simulation Attack 1, we implemented a Python script which sim-
ulates all operations that are performed within CSIDH in the OAYT im-
plementation. Our approach works as follows: We use our implemented
cost-simulation to output a transcript of each point multiplication, isogeny
computation, etc., in addition to their cost. We then select one of these oper-
ations using the strategy corresponding to the attack model (e.g., uniformly
random for Attack 1) and determine the impact of a fault occurring at that

5.1 Protecting CSIDH with Dummy-Operations 117

position. This script is parameterized by the relative cost of each operation
which we experimentally determine for our target implementation.

In general there can be two outcomes of a simulated fault injection:

• A fault was injected into an operation that was not a dummy operation
which will lead to a wrong shared secret in most cases, which can be
observed by the adversary.

• A fault was injected into a dummy operation, i.e., there is no change
in the shared secret. This can be considered an ineffective fault.

Note that there are some special cases, where a fault was injected into
a non-dummy operation, but the resulting shared secret is not influenced
by this. Although these cases are rather rare, our simulation still considers
them, in order to give more realistic results.

In Attack 1, the adversary simply observes the percentage of fault in-
jections that yield a wrong shared secret. This proportion depends on the
secret key as it determines the proportion of real versus dummy operations.

Results We simulated the attack for 100 randomly selected CSIDH512
keys and performed 500,000 fault injections at random locations during the
entire group action. Fig. 5.3 shows the plot of the probability of an ineffective
fault in relation to the weighted sum of the secret key. As the the run-
time of an individual isogeny is linear in its degree, the time spent in ℓi-
isogenies is proportional to ∣ei∣ ⋅ ℓi. Therefore, we compute the weighted sum
as ∑ ∣ei∣ℓi which corresponds to the approximate time spent in real isogenies.
From the simulation, it is easy to see that the probability of seeing a faulty
shared secret is correlated with the secret key. An adversary learning this
probability, can also infer information about the secret key. The more faults
are injected, the more evident this relationship becomes.

Impact After obtaining the percentage of ineffective faults for a large
enough number of rounds, the attacker now wants to gain information on
the used secret key. However, we provide an example to show that this does
not lead to a large reduction of the possible key space. Suppose the attacker
obtains a percentage that allows him to assume that the weighted sum of
the secret key is less than 24k. Then, by a Monte Carlo method, we can
estimate that roughly 1% of all the possible CSIDH512 keys satisfy this con-
dition. This means that the search space got reduced from 2256 to roughly
2249. Since the correlation between the obtained percentage and weighted
sum of the key is not even strong enough to allow for an assumption as in
this example, we conclude that this attack is not able to significantly reduce
the respective search space.

118 Chapter 5: Physical Attacks

5.1.4.2 Attack 2

In the proposed constant-time implementations based on dummy isogenies
(MCR and OAYT), the calculation for a certain ei from the secret key vec-
tor (e1, . . . , en) acts deterministically. This means that first real and then
dummy isogenies are calculated (see lines 12 - 17 in Algorithm 13). Thus,
it is sufficient to determine within this calculation sequence where the first
dummy isogeny occurs in order to know the absolute value of each ei.

We assume in Attack 2 and Attack 3 that the attacker knows spots in the
isogeny computation for the respective degree which reveal whether it is a
real or dummy isogeny calculation with a single fault injection. Such critical
spots (according to Figure 5.1 and Figure 5.2) in the code can be empiri-
cally determined in advance with manageable effort. In our experiments, we
achieved an accuracy of over 95% with a single fault injection.

Results For the second attack, it suffices to simply determine up to which
isogeny computation the algorithm is likely to be deterministic, i.e., no points
are going to be re-sampled. Since the probability of point rejection for a given
degree ℓi is 1/ℓi, the sequence of the first isogeny computations is determin-
istic with high probability, due to the relatively large degrees. For example,
the attacker knows with a probability of 71% that the first 23 isogeny com-
putations run without point rejection in the OAYT implementation. This
makes it easy to target these first 23 isogenies and find out whether they are
real or dummy computations with relatively few fault attempts. Extending
this number of 23 isogenies leads to a quickly increasing probability for point
rejections, thus preventing unambiguous results for later isogenies.

Impact The space reduction achieved in this attack model is from 2256 to
2177 in the best case, where all the respective key elements are 0, and roughly
to 2244 in the average case. For the average case, we assume that 1/11 of
the respective key elements, which lie in the range [−5,5] resp. [0,10], are
0. In the worst case, i.e. none of the respective key elements being 0, the
key space is reduced to 2253

5.1.4.3 Attack 3

Since in this attack model the attacker is also able to trace the order of
the isogeny calculation, a divide-and-conquer approach provides the most
effective strategy.

Results Both constant-time implementations (MCR and OAYT) use a
bound vector m = (m1,m2, . . . ,mn) defining the intervals from which each
secret exponent ei must be sampled. The number of fault injections required
to obtain the absolute value of a certain ei depends on the corresponding mi

5.1 Protecting CSIDH with Dummy-Operations 119

from the bound vector and on the number of attempts needed to distinguish
a real from a dummy isogeny. For each individual degree, the attacker simply
performs a binary search until the calculation of the first dummy isogeny is
identified.

Impact In the case of the MCR implementation, where only positive values
were used for the secret key vector (ei ∈ [0,2m],where m = 5), at least 178
injections are required in the worst case for a full key recovery. Whereas in
the case of the OAYT implementation our strategy requiring at least 178
injections leads to a space reduction to 274 in the worst case and to 267 in
the average case. The remaining search complexity can be further reduced
to roughly 238 in the worst case resp. 234.5 in the average case by a meet-
in-the-middle approach as described in [49].

5.1.5 Practical Experiments

All our fault-injection experiments were performed on a ChipWhisperer-Lite
(CW1173) 32-bit basic board, which includes a 32-bit STM32F303 ARM
Cortex-M4 processor as the target core. The attacks were implemented in
Python (version 3.6.9) using the ChipWhisperer open source toolchain19

(version 5.1.3). An ARM plain C implementation of CSIDH, based on the
implementation by Onuki, Aikawa, Yamazaki, and Takagi (OAYT) [154],
was implemented for our project.

To reduce the time required for all experiments on the target board,
we reduced the key space from 1174 to 32, i.e., our secret consists of two
elements in {−1,0,1}. Furthermore, in Attack 1 we compute isogenies with
the smallest degrees (3 and 5).

In all implemented attacks, the isogenies are calculated without random-
ness, i.e., points and private keys used were precomputed. To require only
one CSIDH action call per experiment, Bob’s public key and the resulting
shared secret for Alice’s given public key were calculated in advance. Specif-
ically, in all the implemented scenarios Alice’s computation of the shared
secret is attacked.

In our setup, the fault is injected by suddenly increasing the clock fre-
quency, hence, forcing the target core to skip an instruction.

Table 5.1 shows the results for the practical attacks. While the rate
for Attack 1 increases slightly for keys containing more real isogenies, the
increase for random-based (without knowledge of critical points) Attack 2 is
much higher. The results from Attack 2 also apply to Attack 3.

19https://github.com/newaetech/chipwhisperer, commit 887e6c7

https://github.com/newaetech/chipwhisperer

120 Chapter 5: Physical Attacks

Table 5.1: Results for Attack 1 and Attack 2

type key # of trials faulty shared secret

Attack 1
{0,0} 5000 19.8%
{0,1} 5000 27.3%
{-1,1} 5000 32.8%

Attack 2
{0,1} 5000 2.1%
{-1,1} 5000 16.4%

5.1.6 Countermeasures

We describe countermeasures for the OAYT implementation, but note that
this also applies to MCR, and, with slight modifications, to the CCCDRS
implementation containing dummy computations.

It is evident that Attack 3 is the main threat that should be considered
for countermeasures. Thus, we analyze the required countermeasures for the
involved dummy computations during isogenies. However, the simulation
of Attack 1 shows that there are other parts of the CSIDH algorithm that
could leak some information on the private key, if specifically attacked as in
the Attacker 3 model. Therefore, we describe the further required counter-
measures, such that the resulting implementation is secure against leakage
in all three attack models.

A rather simple countermeasure would be to randomize the order in
which real and dummy isogenies for a specific degree are computed, instead
of always computing the real ones first. However, Attacker 3 can still attack
this with a slightly larger number of faults, using a probabilistic method to
obtain the key elements. In contrast to this, our idea for countermeasures
against the described fault injection attacks is to redesign the algorithm
such that any fault injection will lead to the output of an error instead of
the output curve. This means that an attacker does no longer see if the
injected fault affected a real or a dummy operation, and is thus effective
against all three attack models we described.

A key function that is frequently used is a check for equality. This is
performed in constant time and therefore does not leak any information.
The presented countermeasures are designed for our described specific attack
model, i.e. the adversary is limited to injecting exactly one fault, which can
either be a random fault or an instruction skip.

5.1.6.1 Isogenies

In order to reach security against Attack 3, we have to be able to detect
faults during the dummy computations of isogenies. However, we stress that
we require a unified isogeny algorithm, which computes a real isogeny or
dummy isogeny of given degree in constant time, based on a decision bit

5.1 Protecting CSIDH with Dummy-Operations 121

Algorithm 14: Protecting the codomain curve

Input : Curve parameters A,C ∈ F, degree ℓ, kernel points
(Xi ∶ Zi) for 1 ≤ i ≤ (ℓ − 1)/2, bitmask b ∈ {0,1}.

Output: Curve parameters A′,C ′ ∈ F, error variable error.

1 Set π+ ← 1, π− ← 1
2 for i ∈ {1, . . . , (ℓ − 1)/2} do
3 t0 ← cadd(Xi, Zi, b).
4 t1 ← csub(Xi, Zi, b).
5 π+ ← π+ ⋅ t0.
6 π− ← π− ⋅ t1.

7 t0 ← cadd2(C,C, b).

8 t1 ← (A − t0)
ℓ ⋅ π8

−.

9 t0 ← (A + t0)
ℓ ⋅ π8

+.
10 A′ ← cadd(t1, t0, b).
11 A′ ← cadd(A′,A′, b).
12 C ′ ← csub(t0, t1, b).
13 error ← cverify(A′,C ′,¬b).
14 return A′,C ′, error.

b ∈ {0,1}. This means that countermeasures for one of the two cases must
be executed in both cases to maintain the constant-time property. However,
it must be ensured that the verifications only lead to the output of an error
in the relevant case. This is implemented via the function cverify(x, y, b),
which always checks whether x = y via the constant-time check for equality,
but only outputs the result if b = 1.

In this section, we assume that the decision bit is set as b = 0 if a dummy
isogeny is to be computed, and b = 1 for the real isogeny case.

5.1.6.2 Real isogenies

As depicted in Section 5.1.2.2, the two additional differential additions
(DADDs) are the only dummy computations in a real isogeny. Since their
output is discarded, we have to validate that no fault has been injected dur-
ing their execution. However, in this case the validation is straightforward.
The DADDs are designed to compute K ′ = [ℓ]K for an ℓ-isogeny (see Section
5.1.2.2). Thus, in real isogenies, the result must be the point ∞, since K has
order ℓ. This means that we can simply call cverify(K ′,∞, b), in order to
perform this validation only in the case of real isogenies.

122 Chapter 5: Physical Attacks

5.1.6.3 Dummy isogenies

In dummy isogenies, the dummy computations are the codomain curve com-
putation and the point evaluation, as described in Section 5.1.2.2. However,
the involved dummy computations here don’t allow for an elegant verifi-
cation of point orders or supersingularity, as in all the other cases in this
section. Instead, we will make use of a conditional addition cadd(x, y, b),
which outputs x if b = 0 and x + y if b = 1. This function is implemented
by first calling a conditional set function, which takes as input y and b, is
initialized by the output value 0, and overwrites this output by y if b = 1.
Note that this function is implemented to run in constant time, in order to
prevent leakage. Then, we call the usual addition function for F-elements,
and obtain the desired output in constant time.

While we have to maintain the structure of computations in the case of
real isogenies (i.e. for b = 1), we have to make changes to them in order
to obtain verifiable results in the dummy case (i.e. for b = 0). To manage
this in constant-time, we make use of the conditional add function. Analo-
gously, we define a conditional subtraction csub(x, y, b), and can compute
cadd2(x, y, b) with result bx + by through two calls to the conditional set
function.

Codomain curve computation Instead of using multiples of the kernel
generator K, dummy isogenies use multiples of the input point Ps. Thus, the
output does not refer to a special type of curve or follow any other special
property that can be validated.

Recall that the codomain curve parameters are computed by Eq. 5.2. It
is evident that different steps during the computations of A′ and C ′ contain
similar terms, and mostly differ in sign changes. Therefore, our strategy to
evaluate these computations in the dummy case is to manipulate some of
them with conditional additions, in order to obtain A′ = C ′. To reach this,
our algorithm is designed in a way such that a fault injection in any line of
code leads to A′ ≠ C ′ in the dummy case. On the other hand, it obviously
computes the correct output parameters in the case of real isogenies. Algo-
rithm 14 details this method. Again we make use of the conditional verify
function, to only possibly raise an error if b = 0.

Point evaluation Analogously to the codomain curve computation, there
is no possibility to check for the correct executions of this part through point
order checks in the dummy case. Thus, we resort to the same strategy as
for the codomain curve computation.

The output points are computed by Eq. 5.1. We can again use the same
strategy to manipulate the computations to output values satisfying X ′ = Z ′

in the dummy case. As above, a fault to any line of code will result in
output values with X ′ ≠ Z ′, and in the real isogeny case, the algorithm stays

5.1 Protecting CSIDH with Dummy-Operations 123

Algorithm 15: Protecting the point evaluation

Input : Input point (X ∶ Z), degree ℓ, kernel points (Xi ∶ Zi) for
1 ≤ i ≤ (ℓ − 1)/2, bitmask b ∈ {0,1}.

Output: Output point (X ′ ∶ Z ′), error variable error.

1 t+ ← cadd(X,Z, b).
2 t− ← csub(X,Z, b).
3 Set πX ← 1, πZ ← 1.
4 for i ∈ {1, . . . , (ℓ − 1)/2} do
5 t0 ← cadd(Xi, Zi, b).
6 t1 ← csub(Xi, Zi, b).
7 t0 ← t− ⋅ t0.
8 t1 ← t+ ⋅ t1.
9 t2 ← cadd(t1, t0, b).

10 t3 ← csub(t0, t1, b).
11 πX ← πX ⋅ t2.
12 πZ ← πX ⋅ t3.

13 X ′ ← cadd(¬b,X, b).
14 Z ′ ← cadd(¬b,Z, b).
15 X ′ ←X ′ ⋅ π2

X .
16 Z ′ ← Z ′ ⋅ π2

Z .
17 error ← cverify(X ′, Z ′,¬b).
18 return X ′, Z ′, error.

unchanged. This method is detailed in Algorithm 15. Note that we are
required to run this algorithm twice per isogeny, since both points P0 and
P1 must be pushed through an isogeny at each step.

In addition to the faults aiming at dummy computations, we need to be
able to detect faults in non-dummy computations as well, in order to output
an error instead of the output at the end of the algorithm. Otherwise, the
attacker could still observe the difference between these cases.

To this end, we note that the output of an isogeny consists of the
codomain curve parameters, and the evaluated points. If a fault is injected
during the computation of the codomain curve, then (with very high proba-
bility) the resulting parameters will not refer to a supersingular curve any-
more. This can be deduced from the fact that the probability of a random
parameter a = A/C to define a supersingular curve is roughly 1/

√
p, and

therefore negligible [49]. Thus, the resulting curve at the end of the algo-
rithm will most likely not be supersingular. It therefore suffices to perform
a single supersingularity check, e.g. as done in the public key validation
in [49], at the end of the algorithm, and output an error in case of a non-

124 Chapter 5: Physical Attacks

supersingular curve. Instead of using the validation from [49], we use a
different, slightly relaxed, approach. We simply sample a random point Q
on the curve, and check that [p+ 1]Q =∞. This method is much faster, but
has a small chance to output false positives, so is not usable as public key
validation. However, we heuristically tested the probability for false posi-
tives, and found that in 108 experiments with random curve parameters, our
method and the rigorous verifications always had the same result. Thus, it
seems to be infeasible for the attacker to exploit this relaxed supersingularity
check.

The case of output points will be handled in detail in the following sec-
tion.

5.1.6.4 Point orders and scalar multiplications

Scalar multiplications take place in line 6 and 9–10 in Algorithm 13, and are
intended to produce points of the desired orders. If during such a multiplica-
tion a fault is injected randomly, i.e. not aiming to produce a specific faulty
output, then the probability for still generating a point of desired order is
negligible.20 The same is true for faults injected during the point evaluation
of a real isogeny. For detecting such a fault, it therefore suffices to check if
the output point P has the required order ℓ by verifying that [ℓ]P =∞.

However, it is not required to perform such a check after each scalar
multiplication resp. isogeny. Indeed, it suffices to check point orders in the
two following situations:

• At the end of each run through a batch of isogenies, if all computations
are running correctly, then both points P0 and P1 must be the point at
infinity ∞ at the end of the for-loop in line 7 of Algorithm 13. Thus,
if we verify this at the end of each run through a batch, we are able
to detect faults even if the respective faulty point Ps is not used to
generate a kernel input point for an isogeny anymore after the fault
is injected. This ensures the correctness of the scalar multiplications
in lines 6 and 10 of Algorithm 13, and of the involved isogeny point
evaluations.

• In order to validate the scalar multiplication in line 9 of Algorithm 13,
we need to verify that K indeed has the correct order ℓ for each isogeny.
This is done by calculating [ℓ]K and verifying that the result equals
∞ for each isogeny. Note that in the case of real isogenies, a faulty
point K leads to wrong results, that can be detected anyway; however,
in the dummy case, the input point K is discarded, so this order check
is indeed required. In order to keep our algorithm constant-time, this
therefore has to be done in both cases.

20This follows since the required orders are always small, and for each prime factor
ℓi∣#E[π − 1] = #E[π + 1] = p + 1, the probability for the order of a random point with
x-coordinate in F to contain the factor ℓi is 1 − 1/ℓi.

5.1 Protecting CSIDH with Dummy-Operations 125

All other scalar multiplications do not require separate order checks, since
faults would be detected by the mentioned verifications.

Remark 2 Theoretically, the attacker could try to inject a fault such that a
specific output point is produced, although this is not possible in our attacker
model. In particular, the above verification does not detect a fault, if the
order of the output point divides the desired order. If the attacker produces a
point that lies on the same curve as the correct output point would (i.e., not
on its twist), then this does not lead to a wrong computation, and therefore
does not lead to possible leakage. Note that in CSIDH any point P of order
ℓ on the same curve produces the same ℓ-isogeny codomain curve. It only
makes a difference if P ∈ E[π − 1] or P ∈ E[π + 1].

This also explains a possible attack strategy: The adversary forces the
output of a point on the twist with order dividing the expected order. Thus,
the respective isogenies are computed with the wrong direction in the isogeny
graph, which leads to leakage.

However, this is only a theoretical attack. Indeed, the chance for this to
happen by accident is negligible, and to specifically map a point to a point
on the twist of the same order, with an unknown curve, seems infeasible.
Even computing such a point with known curve would require to compute
an irrational endomorphism, which, if possible in general, would completely
break CSIDH on its own [50]. Computing small prime order points, thus pos-
sibly having an order dividing the expected order, could otherwise be done
through division polynomials. However, as explained above, the attacker
does not know the current curve (except for the starting curve) when inject-
ing a fault, which means that division polynomials cannot be computed.

However, there is a simple, but rather costly, countermeasure to prevent
attacks of this fashion. It suffices to check if the input kernel generator K lies
on the correct curve via a Legendre symbol computation for each isogeny,
and output an error otherwise. Although this seems not to be necessary
for the reasons above, we report on the performance implications for this in
Section 5.1.7.

5.1.6.5 Other functions

The CSIDH constant-time algorithms from [136, 154] feature some more
functions outside of the scope of the sections above. Compared to isogeny
computations and scalar multiplications, their share of the total running time
is small. Nevertheless, we review if countermeasures against fault injections
for these functions are required.

The mentioned functions include the Elligator map [21], a method for
efficient point sampling. For our discussion and in our implementation, we
use the projective Elligator implementation from [51]. Further, the constant-
time conditional point swap function cswap plays an important role in all

126 Chapter 5: Physical Attacks

current constant-time CSIDH implementations, and we review a method to
prevent obvious loop-abort faults.

Apart from these functions, there are more functions, like integer multi-
plications. However, we disregard them here, since any fault to these func-
tions is detectable through our described methods, e.g. through point order
checks.

5.1.6.6 Conditional point swaps

The cswap function takes two F-values and a decision bit b ∈ {0,1} as in-
put, and swaps the input values if b = 1. However, this is performed in
constant-time, independent from the value of b. The swapping of two ellip-
tic curve points therefore requires two separate executions of cswap for their
two coordinates.

If one of these swaps is skipped or subject to a fault injection, this means
that the respective X- and Z-coordinates of the two points no longer fit
together as before. Thus, the coordinates refer to different points then, also
leading to different point orders. This also means that our point order checks
from the previous sections can detect such a fault.

5.1.6.7 Elligator

The Elligator map as used in [51] efficiently samples projective points P0 ∈
EA[π−1] and P1 ∈ EA[π+1] on the current curve, where the cost is dominated
by one Legendre symbol calculation. However, if a fault is injected there,
we can no longer guarantee that indeed P0 ∈ EA[π − 1] and P1 ∈ EA[π + 1].
Deviating from this would mean that we compute isogenies with a wrong
sign, and therefore obtain a wrong output curve, which can cause leakage.

We mitigate this by computing the Legendre symbol for both of these
points, and thereby making sure that P0 ∈ EA[π − 1] and P1 ∈ EA[π + 1] is
satisfied.

5.1.6.8 Loop-abort faults

As mentioned in [51], and also applied to SIDH in [94], loop-abort faults can
lead to a stopping of the algorithm, although not all required isogenies have
been computed. In the CSIDH implementation featuring dummy isogenies,
this can lead to leakage, since a correctly established shared secret in this
case means that all the skipped isogenies have been dummies. As usual,
this can be prevented by using multiple counters, in order to make it far
harder for the attacker to achieve an undetected loop-abort. In the CSIDH
implementations from MCR and OAYT, there already are several counters,
so it suffices to compare them before outputting the resulting curve, and
thereby checking if one of them has been manipulated to abort the loop.

5.1 Protecting CSIDH with Dummy-Operations 127

Table 5.2: Performance results for one group action for the CSIDH512 im-
plementation on the ARM Cortex-M4 without and with countermeasures.
Averaged over 10 evaluations. Countermeasures for the theoretical twist
attack are evaluated separately.

STM32F407 (24 MHz) STM32F303 (7.4 MHz)
[clock cycles] [clock cycles]

w/o CM 15 523M 15 721M
w/ CM (w/o twist) 16 322M 16 751M
overhead 804M +5% 1 030M +7%
w/ CM (w/ twist) 20 907M 21 486M
overhead 5 384M +35% 5 765M +37%

5.1.6.9 Decision bits

In many cases, decision bits must be set, such as b, which decides whether a
real or dummy isogeny must be computed, or a decision bit that decides if P0

or P1 is used to compute the kernel generator for an isogeny. For our attack
models, we could disregard these parts because of the low computational
cost, but anyway we provide a simple countermeasure for leakage through
an injected fault here. Since in our model the attacker only performs one
fault injection, we can simply compute the respective bit twice, check if both
computations obtained the same result, and output an error otherwise.

Remark 3 We note that also the dummy-free implementation of [51]
offers attack surface; e.g. it is vulnerable to attacks aiming at the cswap

function, Elligator, or some of the decision bit choices, which means that our
discussion on these functions also applies to the dummy-free implementation.

5.1.7 Performance results

We implemented the countermeasures described in Section 5.1.6 into the
implementation that was used in Section 5.1.5 to investigate the perfor-
mance overhead of the proposed countermeasures. The concrete security
of CSIDH512 is currently under heavy debate [158, 35]; like most previous
work on CSIDH implementations, we focus on the CSIDH512 parameter
set. The proposed attacks and countermeasures, however, apply to other
parameter sets as well. The code was compiled with arm-none-eabi-gcc21

Version 10.1.0. Table 5.2 contains the performance results without and with
the countermeasures implemented. We report cycle counts for both the
STM32F303, which is the core on the 32-bit ChipWhisperer Lite, and the

21https://developer.arm.com/

https://developer.arm.com/

128 Chapter 5: Physical Attacks

STM32F407 which is used in various post-quantum cryptography implemen-
tations in the literature and the benchmarking project PQM4 [114]. Our
benchmarking code is primarily based on PQM4 and we follow the common
practice of down-clocking the STM32F407 to 24 MHz to avoid flash wait
states impacting the performance results. We report the average over 10
evaluations of the group action. The overhead of the presented counter-
measures is 5% to 7% and, therefore, relatively small compared to generic
countermeasures like duplicating isogeny computations. The cost for the de-
scribed twist attack countermeasures is slightly larger, namely 35% to 37% in
total, including all other countermeasures. However, as described above, this
attack is only of theoretical nature, which means that the former implemen-
tation suffices in practice. Note that the implementation of the arithmetic is
a portable C implementation that was not heavily optimized for performance
for this platform yet. It is, therefore, expected that all implementations can
be further improved in terms of speed.

5.2 Safe-Error Attacks on SIKE and CSIDH 129

5.2 Safe-Error Attacks on SIKE and CSIDH

This chapter is for all practical purposes identical to the paper Safe-Error
Attacks on SIKE and CSIDH [42] authored jointly with Juliane Krämer and
Marcel Müller, which was published at SPACE 2021.

5.2.1 Introduction

The youngest field of post-quantum cryptography that is studied within
NIST’s standardization process is isogeny-based cryptography, which was
first described in 2006 [66, 164]. Some years later, in 2011, De Feo, Jao, and
Plût presented a fast cryptographic scheme based on isogenies, named SIDH
(Supersingular Isogeny Diffie-Hellman) [109]. SIDH was used to create the
key encapsulation mechanism SIKE (Supersingular Isogeny Key Encapsu-
lation) [108], which was submitted to NIST’s standardization process and
selected as round 3 alternate candidate, i.e., SIKE is considered promising,
but needs to be further studied before being considered for standardization.
In 2018, Castryck, Lange, Martindale, Panny, and Renes presented another
isogeny-based system, called CSIDH (Commutative Supersingular Isogeny
Diffie–Hellman) [49]. Unlike SIKE, CSIDH is non-interactive, making it a
potential drop-in replacement for current Diffie-Hellman schemes. CSIDH
has not been submitted to NIST’s standardization process because it was de-
signed only after the submission deadline had passed. Although the actual
security of the suggested CSIDH parameters against quantum attacks was
recently questioned [158, 35], CSIDH is still a promising and widely discussed
isogeny-based scheme. However, the recent quantum attacks show that the
young field of isogeny-based cryptography has not been sufficiently studied
with respect to (quantum) cryptanalysis yet. Also, the physical security of
isogeny-based schemes has not been sufficiently studied yet.

In this work, we analyze the physical security of SIKE and CSIDH. Phys-
ical attacks allow attackers to deduce secret information of an algorithm by
observing or modifying the platform it operates on. In a passive (or side-
channel) attack, the attacker analyzes physical information that they can
measure while cryptographic operations are computed. In an active attack,
on the other hand, the attacker directly interacts with the running algo-
rithm, causing a change in its operations through which information can be
extracted. Hence, active attacks are also called fault attacks.

Analyzing SIKE and CSIDH with respect to a specific fault attack is the
focus of this work. We analyze both schemes regarding their vulnerability
towards safe-error attacks. Safe-error attacks have been first published by
Yen and Joye in 2000 [188]. They suggested that by inducing transient faults,
an implementation leaks one bit of information depending on whether the
algorithm results in an error or not. Yen and Joye first described attacks on
smart cards using a square-and-multiply algorithm and later applied safe-

130 Chapter 5: Physical Attacks

error attacks on the Montgomery ladder, showing that by perturbing memory
during computation, one can deduce one bit of secret information [112].
Safe-error attacks are particularly interesting because even if the algorithm
were to detect a fault in its operation, it will still leak information. Hence,
standard countermeasures, like checking for faults and outputting a random
value in case a fault was detected, still provide the attacker with information
and therefore are not sufficient to protect an implementation against safe-
error attacks.

Safe-error attack mitigations usually do not feature in current implemen-
tations, rendering them vulnerable against these attacks, see, e.g., [26]. Also
our work shows that recent implementations of isogeny-based schemes do
not provide explicit protection against safe-error attacks. This is concerning
especially since some of our attacks are similar to attacks that have long
been known in the ECC community, e.g., [188, 112].

Our Contribution. The focus of this work is to analyze SIKE and CSIDH
with respect to safe-error attacks. To the best of our knowledge, SIKE has
not been studied with respect to these attacks before.

We develop attack scenarios for SIKE and CSIDH and demonstrate the
feasibility of the presented safe-error attacks by performing practical ex-
periments. The experiments were performed against C implementations of
SIKE and CSIDH on a ChipWhisperer board with an ARM Cortex-M4 pro-
cessor as target core. The implementation of CSIDH that we attacked is a
constant-time implementation based on dummy isogenies. We achieve full
key recovery of all n bits of the secret key within O(n) interactions for two of
the four attacks laid out in this paper. We discuss possible countermeasures
and their performance impact. The code used for this work is available22 in
the public domain, which includes the modified CSIDH and SIKE Cortex-M4
implementation and all attack scripts.

The attack against SIKE that we carried out practically can analogously
be applied to B-SIDH [60].

Related work. Although isogeny-based cryptography provides promising
candidates for quantum-resistant public-key schemes, only few results re-
garding the physical security of isogeny-based cryptography in general and
SIDH [120, 91, 94, 180], SIKE [193], and CSIDH [40, 51, 123] in particular
exist. In [91], the authors presented the first fault attack on SIDH, together
with corresponding countermeasure. In [120], the authors propose different
zero-value attacks on SIDH. Based on loop-abort fault injection, Gélin and
Wesolowski presented side-channel and fault attacks against isogeny-based
primitives [94]. The first published physical attack on SIKE was a power
side-channel attack exploiting differences in calculations depending on the
secret key [193]. Ti proposed in [180] a fault attack on SIDH by changing the

22https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC

https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC

5.2 Safe-Error Attacks on SIKE and CSIDH 131

base point to a random point via fault injection. In [177], the authors pre-
sented the first experimental realization of Ti’s theoretical fault attack and
proposed countermeasures against this attack. In [51], the authors analyzed
CSIDH for potential attacks by reviewing and improving the constant-time
implementations of [136] and [154]. Furthermore, they proposed a dummy-
free CSIDH algorithm. A recent work [40] presents safe-error and further
fault attacks, together with countermeasures, on a constant-time CSIDH
implementation with dummy isogenies. The attack against CSIDH that we
carried out practically attacks the resulting implementation of [40]. LeGrow
and Hutchinson [123] suggest to randomize the order of execution of isoge-
nies to increase the number of attacks required when attacking dummy-based
constant-time implementations of CSIDH.

Concurrently to our work, several PQC schemes have been analyzed
with respect to safe-error attacks [26]. However, isogeny-based schemes are
not covered in this work.

Organization. In Section 5.2.2, we present necessary background on SIKE,
CSIDH, and safe-error attacks. In Sections 5.2.3 and 5.2.4, we present safe-
error attacks on SIKE and CSIDH, respectively. In Section 5.2.5, we explain
how to perform the described safe-error attacks on a real device and present
full key recovery. We discuss possible countermeasures in Section 5.2.6 and
conclude this work in Section 5.2.7.

5.2.2 Background

We first discuss implementation details of SIKE and CSIDH. For readers
not familiar with isogenies, we refer to [59]. Afterwards, the introduction to
safe-errors shows the pattern common to the attacks and how they work.

5.2.2.1 SIKE

SIKE (Supersingular Isogeny Key Encapsulation) is an interactive key en-
capsulation using supersingular elliptic curves [108]. SIKE has passed into
the third round of the NIST process23 as alternate candidate for future stan-
dardization. To achieve the goal of becoming standardized it will need to
be studied further, especially with respect to efficiency improvements and
all aspects of misuse resistance. SIKE uses SIDH internally, and SIDH will
be the main target of the attacks presented in the following section. For a
detailed overview of SIDH as used in SIKE, we refer to [108].

SIDH is constructed as follows: A public prime p = 2e23e3 − 1 such that
2e2 ≈ 3e3 is chosen, as well as two points on the torsion group associated to
their base: P,Q ∈ E0[2

e2] or E0[3
e3]. These represent the respective public

generators. The rest of the algorithm is computed over Fp2 . At the start of

23https://doi.org/10.6028/NIST.IR.8309

https://doi.org/10.6028/NIST.IR.8309

132 Chapter 5: Physical Attacks

352 // Main loop

353 for (i = 0; i < nbits; i++) {

354 bit = (m[i >> LOG2RADIX] >> (i & (RADIX-1))) & 1;

355 swap = bit ^ prevbit;

356 prevbit = bit;

357 mask = 0 - (digit_t)swap;

358

359 swap_points(R, R2, mask);

360 xDBLADD(R0, R2, R->X, A24);

361 fp2mul_mont(R2->X, R->Z, R2->X);

362 }

Listing 5.1: LADDER3PT – SIKE

the exchange, each party agrees on picking a base of either 2 or 3 as long
as they differ between them. Afterwards, each party generates a private key
sk ∈ Fp2 . Of note here is that in the efficient implementation of [108], three
points are used. The third point is R = P −Q and is used to speedup the
computation through a three-point ladder [83](cf. Algorithms 16 and 19, and
Listing 1). Using these generators as well as their private key, each party
then computes their public curve E2 or E3. This curve is calculated through
a chain of e2 2-isogenies, or e3 3-isogenies respectively. Each isogeny uses a
generator of the form ⟨P + [sk]Q⟩ as the kernel. The projection of the other
party basis point and this curve are then sent to the other party, where the
same procedure is repeated to arrive at the curve E2/3 and E3/2. These two
curves are isomorphic to each other and thus the parties have arrived at a
shared secret: the j-invariant of E2/3 and E3/2, respectively.

The submitted implementation from Round 3 is constant-time and al-
ready includes several countermeasures against fault attacks. The imple-
mentation is secure against the attack presented in Section 5.2.3.1, but vul-
nerable to the second one as presented in Section 5.2.3.2.

5.2.2.2 CSIDH

CSIDH (Commutative Supersingular Isogeny Diffie–Hellman) describes a
non-interactive key exchange using supersingular elliptic curves [49]. For
a more detailed overview of the key exchange, we refer to [49].

CSIDH is constructed as follows: A prime p is chosen of the form p =
4 ⋅ ℓ1 ⋅ ⋅ ⋅ ℓn − 1, where the ℓi are small pairwise distinct odd primes. The rest
of the algorithm is computed in Fp. The algorithm uses elliptic curves in
Montgomery form: E0 ∶ y

2 = x3 + Ax2 + x. To begin, each party generates
a secret key (e1, . . . , en), where each ei is sampled uniformly random from
the interval [−m,m] with m ∈ N. The key exchange is then prepared by
calculating the elliptic curve associated with the secret key: For each ei

5.2 Safe-Error Attacks on SIKE and CSIDH 133

Algorithm 16: xDBLADD

1 function xDBLADD
Input: (XP ∶ ZP), (XQ, ZQ), (XQ−P ∶ ZQ−P), and

(a+24 ∶ 1) (A + 2C ∶ 4C)
Output: (X[2]P ∶ Z[2]P), (XP+Q, ZP+Q)

2 t0 ←XP +ZP

3 t1 ←XP −ZP

4 X[2]P ← t20
5 t2 ←XQ −ZQ

6 xP+Q ←XQ +ZQ

7 Z[2]P ← t21
8 t1 ← t1 ⋅XP+Q
9 t2 ←X[2]P ⋅ −Z[2]P

10 X[2]P ←X[2]P ⋅Z[2]P
11 XP+Q ← a+24 ⋅ t2
12 ZP+Q ← t0 − t1
13 Z[2]P ←XP+Q +Z[2]P
14 XP+Q ← t0 + t1
15 Z[2]P ← Z[2]P ⋅ t2
16 ZP+Q ← Z2

P+Q
17 XP+Q ←X2

P+Q
18 ZP+Q ←XQ−P ⋅ZP+Q
19 XP+Q ← ZQ−P ⋅XP+Q
20 return (X[2]P ∶ Z[2]P), (XP+Q, ZP+Q)

134 Chapter 5: Physical Attacks

Algorithm 17: CSIDH Algorithm of [154]

Input: A ∈ Fp,m ∈ N, a list of integers (e1, . . . , en) ∈ [−m,m]n and n
distinct odd primes ℓ1, . . . , ℓn s.t. p = 4∏i ℓi − 1.

Output: B ∈ Fp,m ∈ N s.t. EB = (l
e1
1 ⋅ ⋅ ⋅ le2n) ∗EA, where

li = (ℓi, π − 1) for i = 1, . . . , n, and π is the p-th power
Frobenius endomorphism of EA.

1 Set e′i =m − ∣ei∣ for i = 1, . . . , n
2 while some ei ≠ 0 or e′i ≠ 0 do
3 Set S = {i∣ei ≠ 0 or e′i ≠ 0}
4 Set k =∏i∈S ℓi
5 Generate points P0 ∈ EA[π + 1] and P1 ∈ EA[π − 1] by Elligator
6 Let P0 ← [(p + 1)/k]P0 and P1 ← [(p + 1)/k]P1

7 for i ∈ S do
8 Set s the sign bit of ei
9 Set Q = [k/ℓi]Ps

10 Let P1−s ← [ℓi]P1−s.
11 if Q ≠∞ then
12 if ei ≠ 0 then
13 Compute an isogeny ϕ ∶ EA → EB with kerϕ = ⟨Q⟩
14 Let A← B,P0 ← ϕ(P0), P1 ← ϕ(P1), and

ei ← ei − 1 + 2s

15 else
16 Dummy computation
17 Let A← A,Ps ← [ℓi]Ps, and e′i ← e′i − 1.

18 Let k ← k/ℓi

19 return A

a total of ∣ei∣ ℓi-isogenies have to be calculated. The sign of ei represents
the direction taken in the respective ℓi-isogeny graph. As the composition of
isogenies is commutative, each computed curve will be isomorphic no matter
in which order they are calculated. The isognies are then chained to compute

the public curve associated to the secret key: E0
(e1,...,en)
ÐÐÐÐÐ→ EA. Bob does the

same to calculate EB . The parameter of the curves EA and EB correspond
to the public keys and are then exchanged and each party repeats their
isogeny calculation using the other’s public key as the starting curve: Alice

calculates EB
(e1,...,en)
ÐÐÐÐÐ→ EBA and Bob calculates EAB in a similar fashion.

The final curves EBA and EAB are the same, and the shared secret is the A
parameter of this curve in Montgomery form.

5.2 Safe-Error Attacks on SIKE and CSIDH 135

The straightforward implementation of the algorithm would be highly
variable in time, since different amounts of isogenies need to computed, de-
pending on the secret key. It would be easy for an attacker to trace the
amount of isogenies calculated and their degree as isogenies with a larger de-
gree require more computational effort. In 2019, Meyer, Campos, and Reith
have presented a constant-time implementation of CSIDH [136]. The authors
tackle this issue by making the amount of isogeny evaluations constant, thus
only leaking the degree of the isogenies themselves and not the exact number
of them. This follows from the aforementioned fact that higher degree isoge-
nies take longer to construct and, e.g., could be recovered through a timing
attack. They achieve this by calculating ”dummy” isogenies which serve
as extra computational time to thwart timing attacks from finding the real
amount of isogenies of a given degree. Further, they change the interval from
which the secret key parts are sampled from [−m,m] to [0,2m] so that an
attacker cannot tell apart secret keys with unbalanced positive and negative
parts. Unfortunately, these dummy calculations have added a new attack
vector: loop-abort attacks. Such an attack was first described in passing in
[51]. In [40] the approach using dummy isogenies has been further refined.
Thereby, the authors analyzed the constant-time implementation for fault-
injection attacks. This resulted, among others, in added safeguards to the
point evaluation and codomain curve algorithm. However, these safeguards
do not protect against the attack described in Section 5.2.4.1, as the attacker
assumed in this paper has a different threat model.

Following [136] in [154] the authors proposed to speed-up the implemen-
tation by reverting the secret key part interval to [−m,m] and guarding
against unbalanced keys by using two points instead of one [154]. This
change, however, has introduced a possible new attack vector as described
in Section 5.2.4.2.

5.2.2.3 Safe-Error Attacks

In [188], Yen and Joye introduce a new category of active attacks, so called
safe-error attacks. In this kind of attacks, the adversary uses fault injections
to perturb a specific memory location with the intent of not modifying the
final result of the computation: the algorithm may overwrite or throw away
modified values, making them ”safe errors”. The presence or absence of
an error then gives insight into which codepath the algorithm executed.
Two kinds of safe-error attacks exist: in a memory safe-error (M safe-error)
attack, the attacker modifies the memory, i.e., in general these attacks focus
on specific implementations [112, 189, 190]. In a computational safe-error (C
safe-error) attack, however, the computation itself is attacked through, e.g.,
skipping instructions. Hence, C safe-error attacks rather target algorithmic
vulnerabilities [112, 190].

The general construction of a safe-error attack is as follows:

136 Chapter 5: Physical Attacks

Algorithm 18: A toy algorithm vulnerable to a variable-access
attack
Input: S the n-bit secret key
Output: a public message M

1 M ← 1
2 K ← 0
3 P ← 0
4 for i ∈ 0..n do
5 if Si = 0 then
6 K ← calculate(Si, P,K)

7 else
8 P ← calculate(Si,K,P)

9 M ←M +K ∗ P

10 return M

Suppose an algorithm iterates over secret data. It then branches and
does slightly different calculations depending on whether a given bit in the
secret data is equal to 0 or 1. The algorithm presented in Algorithm 18 has
been secured against timing side-channel attacks by consuming the same
time in each branch. Precisely this predictability, enforced to thwart timing
attacks, makes safe-error attacks easier to carry out, as these attacks require
timed fault-injections. When implementing countermeasures, implementers
thus have to investigate all implications that these countermeasures have.
However, since some side-channel attacks, e.g., timing attacks, are generally
easier to carry out than other physical attacks, e.g., safe-error attacks, it can
still be the right decision to fix a specific vulnerability by enabling other,
practically less relevant attacks. In application-related implementations, ex-
plicit branching on secret data is usually avoided. However, the different
memory access patterns still occur due to the structure of the respective
algorithm. As we show in Section 5.2.3.1, using a constant time swap algo-
rithm instead of condition branching is not sufficient and may even provide
an additional attack vector.

Analyzing the read and write patterns of Algorithm 18 and classing them
according to the state that they occur in allows to look for differences that
could be exploitable. These differences can be rendered in a table, such as
Table 5.3. This allows for visual inspection of differences.

This representation makes it immediately clear that even though the
same method is being called, it affects different data. This allows an attacker
to exploit the difference between the two branches by modifying one memory
location and checking whether a safe-error occurred.

5.2 Safe-Error Attacks on SIKE and CSIDH 137

Table 5.3: Access patterns depending on the i-th bit of the secret key

Condition Read Variables Written Variables
Si = 0 P,K K
Si = 1 P,K P

Example: Let’s assume we try to attack the first branch, when Si = 0.
During the calculate routine, we modify the memory used by the variable K
in such a way that it does not change the result of the computation. This is
done by perturbing the memory once the given memory location is not read
anymore, but before it is being potentially written to. After the calculate
routine has executed, either K or P has been overwritten. If our guess of
Si = 0 was correct, due to being overwritten after being perturbed by the
fault, K now holds again correct information in context of the algorithm.
Letting the algorithm finish leaks the information whether our guess was
correct: If it finishes normally, Si was indeed 0. If we assume that M is
known and verifiable, we can check to see if the outcome was wrong, or,
simpler, an error occurred. If either happened, then Si was 1, as the faulted
K did not get overwritten and subsequently changed the calculation. This
attack needs to be then repeated n times to fully recover the secret key S.

5.2.3 Attacks on SIKE

In this section, we analyze the implementation of SIKE submitted to round
3 of NIST’s standardization process [108] in the context of safe-error attacks.
First, we describe a memory safe-error attack in Section 5.2.3.1, then we de-
scribe a computational safe-error attack in Section 5.2.3.2. For both attacks,
we assume that the victim has a static secret key. Both the encapsulator
and the decapsulator can be the victim of this attack.

5.2.3.1 M-Safe Attack on SIKE

We first give a high-level overview on how the attack is constructed. Then,
we give a more detailed analysis of the individual steps of the attack.

As shown in Section 5.2.2.1 each SIKE participant has their own secret
key m ∈ Fp2 . This key is used to calculate the subgroup ⟨P, [m]Q⟩ repre-
senting the kernel of their secret isogeny. The point multiplication [m]Q is
performed through a three-point ladder algorithm as seen in Algorithm 19.
Important here is that the LADDER3PT function is called with the secret
key m as the first argument. The attacker requires the following capabilities:
They need to be able to introduce a memory fault during a specific point
of execution, as well as be able to verify the result of a given SIKE run.
Both the shared secret as well as any execution errors need to be known
afterwards. The attack proposed in this section then follows three parts:

138 Chapter 5: Physical Attacks

Algorithm 19: The 3-Point Ladder

1 function LADDER3PT
Input: m = (ml−1, ...,m0)2 ∈ Z, (xP , xQ, xQ−P), and (A ∶ 1)
Output: (XP+[m]Q ∶ ZP+[m]Q)

2 ((X0 ∶ Z0), (X1 ∶ Z1), (X2 ∶ Z2))← ((xQ ∶ 1), (xP ∶ 1), (xQ−P ∶ 1))
3 a+24 ← (A + 2)/4
4 for i = 0 to l − 1 do
5 if mi = 1 then
6 ((X0 ∶ Z0), (X1 ∶ Z1))← xDBLADD((X0 ∶ Z0), (X1 ∶ Z1), (X2 ∶ Z2), (a+24 ∶ 1))

7 else
8 ((X0 ∶ Z0), (X2 ∶ Z2))← xDBLADD((X0 ∶ Z0), (X2 ∶ Z2), (X1 ∶ Z1), (a+24 ∶ 1))

9 return (X1, Z1)

Table 5.4: Access patterns depending on the ith-bit of the secret key

Condition Read Variables Written Variables
m[i] = 0 (X0, Z0), (X1, Z1), (X2, Z2) (X0, Z0), (X2, Z2)
m[i] = 1 (X0, Z0), (X1, Z1), (X2, Z2) (X0, Z0), (X1, Z1)

With the goal of extracting an n-bit secret key, the attacker

1. initiates a SIKE key agreement,

2. introduces a memory fault of any kind (bit-flip, scrambling,...) during
the i-th iteration of LADDER3PT, and

3. uses the result of the SIKE run to obtain the value of the i-th bit of
the secret key.

Steps 1 to 3 have to be repeated n times to reconstruct the complete secret
key.

In detail, this means that the attack on this three-point ladder algorithm
follows the schema as described in Section 5.2.2.3. Depending on a given bit
of the secret key, different variables are modified. This can be seen in Ta-
ble 5.4. In this case either (X1, Z1) or (X2, Z2) are passed to xDBLADD.
Without loss of generality, let’s assume for the rest of this section that we
attack m and that the guess for the i-th bit is m[i] = 1. By following the
general outlines of a safe-error attack one needs to modify (X1, Z1) between
its last use and the moment it gets written to. Such a moment exists in Algo-
rithm 19 Line 6 (cf. Section 5.2.2.1): (X1, Z1) is passed to the xDBLADD
subroutine as the second argument, thus (XQ, ZQ) = (X1, Z1) in Algorithm

5.2 Safe-Error Attacks on SIKE and CSIDH 139

16 (cf. Section 5.2.2.1). (X1, Z1) is passed as the third argument in Line
8, this difference is dependent on the secret key. The xDBLADD method
(as seen in Line 6 in Algorithm 16) then returns two values, one of which is
assigned to (X1, Z1) in Algorithm 19. In the xDBLADD routine from Line
6 onwards, (XQ, ZQ) is no longer read, and thus the value of (X1, Z1) stays
unused until the function returns. This is where the attacker executes the
active attack, by scrambling the values backing (XQ, ZQ), i.e., (X1, Z1). If
the attack on the memory location of (X1, Z1) was successful and our guess
was correct, the algorithm will, upon return, overwrite our modification and
finish without encountering an error. One can thus conclude that m[i] = 1.
Should our guess of m[i] = 1 be incorrect, then the algorithm computes a
mismatching shared secret or raises an error. In this case, m[i] = 0. Either
way, a single bit of information is gained of the secret key. Consequently, all
n bits of the static secret key m can be read by this method and the full key
can be recovered through n runs of this attack. The complete attack thus
consists of these steps:

1. The attacker observes a normal SIKE key agreement.

2. As xDBLADD gets called during LADDER3PT, overwrite
(X1, Z1) on the i-th iteration and observe the final result.

3. If the SIKE de/encapsulation fails, we know that (X1, Z1) did not get
overridden. Thus m[i] = 0 otherwise m[i] = 1.

Repeat steps 1 to 3 n times to recover the complete n-bit secret key.
The SIKE implementation in [108] has several parameter sets, each influ-

encing the range of possible values of the secret key. For example, SIKEp610
has an exponent e2 = 305 with an estimated NIST security level 3 [108]. The
private key m is thus sampled from {0, ...,2305 − 1}, giving the private key
305 bits of total length. Therefore an attacker, trying to attack a SIKEp610
instantiation, would need to repeat the attack at least 305 times to achieve
full key recovery.

In the latest version of xDBLADD, as published for the third NIST
PQC process round [108], the authors have chosen to use a simultaneous
double-and-add algorithm. This implementation prevents this particular at-
tack as there is no moment during execution that P or Q is written before
it is potientially read. This is also true during compilation: the order of
operations in the assembly stays the same. Nonetheless, future implementa-
tions have to make sure that they are not vulnerable when using a different
algorithm.

5.2.3.2 C-Safe Attack on SIKE

Similar to the M safe-error attack on SIKE described in the previous section,
the attack described in this section exploits the difference in memory accesses

140 Chapter 5: Physical Attacks

depending on a bit of the secret key. Again, each party generates their own
private key m, used to generate the subgroup ⟨P + [m]Q⟩ of their private
isogeny (cf. Section 5.2.2.1). This point multiplication P + [m]Q is done
through a three-point ladder as seen in Algorithm 19 and Listing 1 (cf.
Section 5.2.2.1). In the C implementation, published in [108], the authors
use a constant-time swapping algorithm to exchange the points R and R2
depending on the i-th bit of the secret key (see Line 359 of Listing 1). The
function is called swap points and accepts both points and a mask as input.
We denote the i-th bit of the secret key as m[i]. The mask of the swapping
function is calculated as xor(m[i],m[i − 1]), with a starting value of 0 for
m[i − 1] if i = 0. If the mask is 1 the points are exchanged, otherwise they
are left as is. This behavior can be exploited by meddling with this function
call. It could for example simply be skipped, or the computation of the
mask be perturbed such that on a 0 mask it stays 0, but on a 1 mask the
value is randomized. Assuming xor(m[i],m[i − 1]) and an attacker skips
this function call using an active attack on the i-th loop, the end result will
be unchanged. If the value had been xor(m[i],m[i−1]), then the end result
would be wrong, as the wrong point would have been used for the rest of
the calculation.24 Since we know that in the first iteration m[i− 1] is forced
to 0, the mask is simply set to the value of xor(m[0],0) =m[0]. The second
iteration of attack then knows the value of m[0] and so on. Thus, in general
the bit m[i] is leaked through a C safe-error. As the keyspace for m is
equal to [0, ...,2e2 − 1], similar to the attack in Section 5.2.3.1, the attack
needs to be repeated at least 305 times to achieve full key recovery when the
parameter set SIKEp610 is used.

5.2.4 Attacks on CSIDH

In this section, we analyse CSIDH with respect to safe-error attacks. We
analyse two recent implementations of CSIDH [40, 154]. Both implementa-
tions are constant-time implementations, and both implementations achieve
this kind of timing attack resistance through dummy isogeny computations.
The main difference between both implementations is that in [40], compu-
tations are done on one point only, while in [154], two points are used. The
analysis of both implementations with respect to safe-error attacks is pre-
sented in Section 5.2.4.1 and Section 5.2.4.2, respectively. For both of the
presented attacks, it is assumed that the victim uses a static secret key.

5.2.4.1 M Safe-Error Attack on an Implementation Using One
Point

In [40], the authors have evaluated possible physical attack vectors for
CSIDH implementations using dummy isogenies. One threat model they

24Wrong shared secret or an error raised from the algorithm.

5.2 Safe-Error Attacks on SIKE and CSIDH 141

Table 5.5: Access pattern depending on the secret key e during the key
exchange

Condition Read Variables Written Variables
ei ≠ 0 P0, P1 P0, P1

ei = 0 Ps where s is the sign bit of ei Ps

did not consider, is one that can introduce memory faults. This will be the
focus of the attack in this section. The attacker only needs to be able to
change a single bit in a certain byte range. In [40], during the execution
of a dummy isogeny, the curve parameter A is not modified. If however
a non-dummy isogeny is calculated, then the A parameter is changed cor-
responding to the newly calculated curve. This leads to a possible attack
vector: assume without loss of generality that the algorithm is currently
calculating isogenies of degree ℓi. If it is currently calculating a dummy
isogeny, a new parameter A is computed, but directly discarded. If a real
isogeny is calculated, that result is then used further. A fault injected with
the intent of modifying the parameter A can now discern if a real or dummy
isogeny is being calculated: if one attacks a real isogeny, the modified value
will be propagated and cause a mismatch of the final shared secret. If it was
a dummy isogeny however, the modified A was discarded and the shared
secret is not impacted. This is now repeated for each possible value of ei,
so as to find out the first time a dummy isogeny is calculated. The value
of ei is then the amount of real isogenies that have been calculated for ℓi.
In the implementation in [40] ei is sampled from the range [0,10], therefore
one needs on average 5 attacks per ei to recover its value. In CSIDH-512 of
[40] the secret key has 74 components, thus on average, an attacker would
need to run 5 × 74 = 370 attacks to recover the full key.

5.2.4.2 M Safe-Error Attacks on an Implementation Using Two
Points

In [154], the authors have introduced a new algorithm that uses two points
to calculate the CSIDH action. This version has an issue similar to the one
described in Section 5.2.4.1, where the parameter A is discarded when cal-
culating a dummy isogeny. Thus it has also the potential for an M safe-error
attack by attacking the A parameter assignment. Unlike the implementation
in [40], in [154] the range [−5,5] is used for each ei. Even though an attacker
additionally needs to recover the sign of ei now, this reduces the amount of
overall attacks required to recover a single ei.

Further, the CSIDH action as described in [154] has another M safe-error
attack vector that will be explained in this section. Table 5.5 shows the
access patterns of two different variables depending on a part of the secret
key: only one point is overwritten when ei equals 0 during the CSIDH action

142 Chapter 5: Physical Attacks

calculation at Line 17 in Algorithm 17 (cf. Section 5.2.2.2). This opens up
the potential of perturbing a given P0 or P1 and finding out if this had any
effect on the calculation. If there was no effect, then the sign of ei is equal
to the index of the point that was overwritten: 0 if positive, 1 if negative.
This allows the attacker to find the sign of a specific ei since the dependency
between isogenies of degree ℓi and its running allows for attacking a specific
degree ℓi [49]. Now let si be the sign of ei. In total, Algorithm 17 does ei
calculations of isogenies of order ℓi. After each calculation, it decrements
ei to keep track of how many more real isogenies need to be computed.
Once ei = 0, only dummy operations are executed. The task is thus, to
find out how many real isogenies are calculated. One can run the following
procedure to find the value of ei: Start with n = 0. Modify Psi after n
iterations just before it is potentially overwritten, and check the final result.
If the shared secret is correct or n is larger than the maximal possible value
for ei, we know ei < n at that point and we can stop the process, otherwise
ei > n, increment n and retry. Once this procedure terminates, ei equals the
amount of calculated real isogenies. Applying this procedure repeatedly, one
can deduce the whole secret key (e1, . . . , en). As [154] uses an instantiation
where the private key elements can range from −5 to 5, in total 2.5+ 1 = 3.5
attacks are required per ei, as well as finding si. In that instantiation, 74
elements are used per secret key, therefore an attacker would need to run
74 × 3.5 = 259 attacks on average for the signs and the full key recovery in
total. The attack can be summarised as follows:

1. Reveal which ℓi is currently being computed from the length of com-
putation.

2. On Line 17 in Algorithm 17 only Psi is being assigned. Thus, perturb-
ing the memory of Psi while [ℓi]Psi is being calculated will allow to
deduce whether i = 0, or i = 1. From now on, we assume that si is
known for each ei.

3. Knowing the sign allows us to now explicitly attack either P0 or P1

and thus find out whether a real or dummy isogeny is being calculated.

If the final shared secret is correct, it was a real isogeny, otherwise it was a
dummy. The value of ei is equal to the count of real isogenies. Once all ei
and their signs si have been recovered, the full private key (e1, . . . , en) can
be reconstructed.

5.2.5 Practical Experiments

In this section, we explain how to perform the described attacks on a
ChipWhisperer board and present the achieved security impact. In the case
of SIKE, we present full key recovery. In the case of CSIDH, due to the
relatively long runtime on the target architecture (≈ 7 seconds for the reduced

5.2 Safe-Error Attacks on SIKE and CSIDH 143

version of CSIDH), we calculated the maximum number of possible runs in
advance and determined further attack parameters accordingly.

All practical attacks were implemented using the ChipWhisperer tool
chain25 (version 5.3.0) in Python (version 3.8.2) and performed on a
ChipWhisperer-Lite board with a 32-bit STM32F303 ARM Cortex-M4
processor as target core. Based on available implementations, we wrote
slightly modified ARM implementations of SIKEp434 and CSIDH512 to
make them suitable for our setup. Security-critical spots remained un-
changed. All binaries were build using the GNU Tools for ARM Em-
bedded Processors 9-2019-q4-major26 (gcc version 9.2.1 20191025 (re-
lease) [ARM/arm-9-branch revision 277599]) using the flags: -0s -

mthumb -mcpu=cortex-m4 -mfloat-abi=soft. The code is freely avail-
able at https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/
SEAoSaC and https://doi.org/10.5281/zenodo.6900027.

In all attack models the adversary aims to attack the calculation of the
shared secret in order to learn parts of the private key. The shared secrets
are calculated without randomness, i.e., points and private keys used were
computed in advance. Both in the case of SIKE and CSIDH, the adversary
is able to randomise variables or skip instructions by injecting one fault
per run. Furthermore, we assume that the attacker is able to trigger and
attack the computation of the shared secret multiple times using the same
pre-computed private keys. However, in a real environment the attacker
is limited to observe the impact of a fault injection (whether both shared
secrets are equal or not), by noticing possible unexpected behaviour in the
protocol. Although static keys are mostly used in server environments where
such invasive fault attacks are not feasible, in [153], the authors described
exemplary environments and challenge-response scenarios where such static-
key attacks can be deployed. Furthermore, CSIDH provides a non-interactive
(static-static) key exchange with full public-key validation.

5.2.5.1 Attacks on SIKE

Since the current implementation [108] is immune to the attack described
in Section 5.2.3.1, we focus on the attack explained in Section 5.2.3.2. As
described, the adversary deploys safe-error analysis to recover the private
key during the computation of the three-point ladder. Since the attacked al-
gorithm runs in constant time, an attacker can easily locate the critical spot,
which in our case represents the main loop within the ladder computation.
Thus, an attacker who can accurately induce any kind of computational fault
inside that spot at the i-th iteration, may be able to deduce if the i-th bit of
the private key is set or not, i.e, ski = 0 or ski = 1 according to whether the
resulting shared secret is incorrect or not. Thus, in this model the required

25https://github.com/newaetech/chipwhisperer, commit fa00c1f
26https://developer.arm.com/

https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
https://doi.org/10.5281/zenodo.6900027
https://github.com/newaetech/chipwhisperer
https://developer.arm.com/

144 Chapter 5: Physical Attacks

number of injections for a full key recovery only depends on the length of the
private key. In this setup, the fault is injected by suddenly modifying the
clock (clock glitching), thus, forcing the target core to skip an instruction.

The SIKEp434 Cortex-M4 implementation27 from [167] available at the
pqm4 project [114] provided the basis for our implementation. However,
this attack can be applied to all available software implementations of
SIKE28 including the round-3 submission [108] to NIST’s standardisation
process. More precisely, the code part that represents this vulnerability
remains the same across all available implementations.

Results. We assume that the attacker knows critical spots within
the attacked loop (cf. Listing 1) which reveal one bit of the private key
after a single fault injection with high accuracy. As shown in this work,
such spots and the corresponding suitable parameters for the injection (e.g.,
width and internal offset of the clock glitch) can be empirically determined
in advance with manageable effort.

In order to determine the success rate for each individual of the 218 bits of
the private key, we performed 21,800 fault injections (100 injections for each
bit) and achieved a relatively high accuracy. More precisely, we obtained on
average over all bits 100% (leading to an error probability p0 = 0, as denoted
in Figure 5.4) accuracy for the case ski = 0 and an accuracy of over 86%
(denoted as p1 in Figure 5.4) for the case ski = 1. As shown in Figure 5.4,
only 5 fault injections are required for each bit, thus 1,090 injections in
total to achieve a success rate above 99% for full key recovery. Since in
our inexpensive setup a single run takes about 12 seconds, full key recovery
requires about 4 hours.

5.2.5.2 Attacks on CSIDH

Since the practical implementation is similar for both attacks, we show with-
out loss of generality how we realised the attack described in Section 5.2.4.1.
The attacker aims to distinguish a real from a dummy isogeny. For this,
they inject a fault during the computation of an isogeny and observe if it
impacts the resulting shared secret. In this attacker model the adversary
can target isogeny computations at positions of their choice and is further
able to trace the faulty isogeny computation to determine its degree. Due to
non-constant time computation within the calculation of the isogeny (e.g., a
square-and-multiply exponentiation based on the degree [136, 154, 40]), the
degree of a given isogeny might be recovered with manageable effort, e.g.,
using Simple Power Analysis [119].

In our setup, the fault is injected by temporarily under-powering the
target core, i.e., by reducing for some clock cycles the value of the supply

27https://github.com/mupq/pqm4, commit 20bcf68
28https://sike.org/#implementation

https://github.com/mupq/pqm4
https://sike.org/#implementation

5.2 Safe-Error Attacks on SIKE and CSIDH 145

Figure 5.4: Success rate for full key recovery as a function of the number of
fault injections per bit (SIKE) or isogeny (CSIDH), respectively. Let α be
the number of injections for each bit/isogeny. Since a single faulty shared se-
cret is sufficient to distinguish the cases, the success rate for full key recovery
can be calculated by P (α) = [(0.5 ⋅ (1 −B(0, α, p1))) + (0.5 ⋅B(0, α, p0)))]

λ,
where λ equals the number of bits in the case of SIKE and equals

∑
n
i=1⌈log2(mi)⌉ for all mi of the corresponding bound vector m =
(m1,m2, . . . ,mn) in the case of CSIDH, B(k,n, p) = (n

k
) ⋅ pk(1 − p)n−k, and

p0, p1 correspond to the respective probabilities.

voltage of the attacked device below the minimum value the device is
specified for. Such an attack might lead to an unpredictable state in the
target variable during an assignment and can therefore be applied to attack
the vulnerable spot regarding the co-domain curve A, as defined in Section
5.2.4.2. For illustration, the attacks occur during the calculation of the first
isogeny, but the other isogenies can be attacked similarly. The implemented
attacks are based on the implementation from [40].

Results.

As suggested in [40], in order to increase the number of attempts by
reducing the time required for a single run, we reduced the key space in
CSIDH512 from 1174 to 32. Further, all required values, e.g. points of cor-
responding order, were calculated in advance, leading in total to a reduction
from 15,721M to 115M clock cycles for a single run. Due to the reduced key
space, private keys are of the form S = (e0, e1), where ei ∈ [−1,1]. To obtain
results for both cases (dummy and real), we performed experiments using
different private keys. In the first case, the private key S1 = (−1,1) consists
of real isogenies only. Thus, attacks should not impact the computation
of the shared secret. As expected, after 2,500 attempts, there is no faulty
shared secret, achieving an accuracy of 100% (leading to an error probability
p0 = 0, as denoted in Figure 5.4). In the second case, however, the selected
private key S2 = (0,1) implies the calculation of a dummy isogeny since
e0 = 0. Hence, fault injections should lead to a faulty shared secret. Here,
we achieved an accuracy of over 92% (denoted as p1 in Figure 5.4). Table
5.6 shows the achieved results of the applied attacks in our setup. Hence,

146 Chapter 5: Physical Attacks

Table 5.6: Results for CSIDH attacking the first isogeny

key # of trials faulty shared secret accuracy
S1 = (−1,1) 2500 0.0% 100.0%
S2 = (0,1) 2500 92.4% 92.4%

based on these numbers, we assume an attacker can distinguish real from
dummy isogenies with a single injection with high accuracy.

Since in dummy-based constant-time implementations of CSIDH (e.g.,
Meyer, Campos, and Reith (MCR) [136] or Onuki, Aikawa, Yamazaki, and
Takagi (OAYT) [154]), the private key vector (e1, . . . , en) is sampled from
an interval defined by a bound vector m = (m1,m2, . . . ,mn), the number of
fault injections required to obtain the absolute value of a certain ei strongly
depends on the corresponding bound vector. More precisely, since the com-
putation of a given degree ℓi occurs deterministically (real-then-dummy), the
attacker performs a binary search through the corresponding mi to identify
the computation of the first dummy isogeny. Thus, the number of attacks
required to obtain the absolute value of a certain ei depends only on the
corresponding bound mi.

The achieved key space reductions are due to the fact that an attacker af-
ter a certain number of attacks knows the absolute values for the private key
vector (e1, . . . , en). In the case of the OAYT implementation of CSIDH512
(where −mi ≤ ei ≤ mi,mi = 5 for i = 0, . . . ,73), our approach leads to a pri-
vate key space reduction from 2256 to 274 in the worst case (ei ≠ 0 for i =
0, . . . ,73) and to 267.06 in the average case after at least 222 ⋅4 = 888 fault in-
jections for a success rate over 99%. The remaining key space can be further
reduced by a meet-in-the-middle approach [49] to about 234.5 in the aver-
age case. For achieving a success rate over 99%, when attacking the MCR
implementation (where 0 ≤ ei ≤ mi,mi ∈ [1,10] for i = 0, . . . ,73), at least
296 ⋅ 4 = 1184 injections are required for full key recovery (cf. Figure 5.4)
since only positive values are allowed for the private key vector. Consid-
ering the running time of the non-optimised implementation of CSIDH512
of about 5 minutes for a single run in our setup, full key recovery would
require about 98 hours in the case of the MCR implementation and about
74 hours to achieve the mentioned key space reduction in the case of the
OAYT version.

Since recent works [35, 158] suggests that CSIDH-512 may not reach the
post-quantum security as initially considered [49], some works recommend to
increase the size of the CSIDH prime p [35, 158, 54]. However, from a classical
perspective, since the classical security only depends on the size of the private
key space, the number of prime factors ℓi remains unchanged. Thus, apart
from the longer running time due to possibly larger prime factors, increasing

5.2 Safe-Error Attacks on SIKE and CSIDH 147

the quantum security has no further influence on the effectiveness of the
presented attack.

5.2.6 Countermeasures

In this section we discuss general countermeasures against safe-error attacks
and then present concrete countermeasures for SIKE and CSIDH.

In safe-error attacks, a simple check of the final result before transmitting
can still leak one bit. This can be easily seen in the attack on SIKE in
Section 5.2.3.2. If the attacker successfully executes an attack, even if the
result is checked for correctness, the implementation will leak one bit: either
the algorithm fails or it returns an unusable result, or the induced error is
overwritten, both of which represent a successful attack. This makes efficient
generic countermeasures hard to design, as, for instance, simply repeating a
calculation after a fault has been detected can be detected, too: an algorithm
that suddenly takes twice as long shows that the attack was successful.

Using infective computation [97], a succesfully induced fault directly, i.e.,
without the necessity of checking, modifies the output value such that the
faulty output does not allow to reveal secret values. In case of safe-error
attacks, this is also not a solution, since any faulty output shows that the
fault was successful. This is all an attacker needs to know in case of safe-error
attacks.

An effective countermeasure consists in redundant computation with con-
sistency check, i.e., calculating the susceptible operations repeatedly and
then choose the value to be output by majority vote. However, this is costly,
since, assuming that an attacker can realize a fault n times within a single
computation of the algorithm, the susceptible operations have to be com-
puted 2 ⋅ n + 1 times. Since second-order faults, i.e., two faults within one
computation, are practical [32], this would require at least a fivefold repeti-
tion of the susceptible operations.

Another route, which is not in the hands of the implementer, is the
selection of hardware the algorithm executes on. Hardware-based detection
of fault attacks through, for instance, voltage sensing or intrusion detection,
are possible ways of shutting down the execution - independent of the effect
of the fault on the computation - before any information could have been
leaked [192].

It is important to note that the attacks presented in this paper exploit
secret-dependent memory access. Implementations and future optimizations
should thus take special care to eliminate any such occurrence and treat
them with the same rigour as secret-depending timings. This also extends
to ”branch-less” versions of algorithms, where, for instance, a pointer is
swapped depending on the bit of a secret key; this does not remove the
secret dependence of the underlying memory.

148 Chapter 5: Physical Attacks

The discussion shows that to prevent safe-error attacks, the susceptible
functions have to be adjusted, as in [188].

5.2.6.1 Securing SIKE

As explained in Section 5.2.3.1, by using a simultaneous double-and-add
algorithm within xDBLADD [108], the particular M safe-error attack on
SIKE can be prevented.

A possible countermeasure against the key recovery presented in Sec-
tion 5.2.3.2 is to add an additional check to the LADDER3PT algorithm.
The attack relies on skipping the swap points method. Hence, a relatively
inexpensive way of detecting an attack is to verify whether the swap actually
took place. Thus, in each loop the implementation would save the current
points, run the swap operation, and eventually check if the calculated mask
had the intended effect.

Although the proposed countermeasure to conditional point swaps from
[40] could be adapted to SIKE, the described approach (cf. [40], Section VI,
Paragraph C, Point 1) represents no real countermeasure. An attack in the
case where no swap takes place (decision bit = 0) does not lead to a false
result (wrong point order), while attacking the conditional swap in the case
of a swap (decision bit = 1) the order check of the resulting point should
fail.

5.2.6.2 Securing CSIDH

Since the current CSIDH action algorithms branch on the secret key, it is
a prime target for exploitation. One possible way of making attacks more
difficult is shown in [123]. Here, LeGrow and Hutchinson show that using a
binary decision vector to interleave the different ℓi-isogenies, an attacker has
to do more than 8x as many attacks to gain the same amount of information.

Another approach is to choose an implementation that is dummy-free.
So far however, dummy-free implementations have come at the cost of being
twice as slow [51]. Further research might be able to close this performance
gap and thereby completely eliminate attacks based on dummy isogenies.

Securing CSIDH against physical attacks is clearly difficult and care has
to be taken to not accidentally enable another attack by fixing a specific
vunerability. One such occurrence are dummy isogenies, introduced as tim-
ing attack countermeasures in [136], which allow an attacker to learn secret
information through fault injections. Although in this specific situation us-
ing dummy isogenies might be reasonable as timing attacks are in general
easier to carry out than fault injections, all implications a countermeasure
can have have always to be considered so that implementers can consciously
reason about trade-offs.

5.2 Safe-Error Attacks on SIKE and CSIDH 149

5.2.7 Conclusion

This work shows how safe-error attacks can be applied to recent isogeny-
based cryptographic schemes. We presented four different attacks on the
SIKE and CSIDH cryptosystems. It is important to note that the resilience
of SIKE against the attack described in Section 5.2.3.1 solely depends on the
structure of the actual implementation. As such, any further implementen-
tations need to make sure to not introduce the possibility of this safe-error
attack. We have shown how to practically realize two of these attacks and
how to achieve full key recovery in a static key context on both SIKE and
CSIDH.

We discussed that securing cryptosystems against safe-error attacks is
non-trivial. This also partially explains why some of the attacks that we ap-
plied to isogeny-based cryptographic schemes have similarly been known in
the ECC community for a long time, and yet have not been prevented in cur-
rent implementations of SIKE and CSIDH. As safe-errors exploit differences
of computation and memory access depending on the secret key, a simple
check is not sufficient. It is equally important, that countermeasures against
certain attacks do not open ways for further safe-error attacks [189]. This
can be the case for example when implementing a simple consistency check,
which might not trigger on all injections, thus inadvertently leaking data.
The same holds true for constant-time implementations, which are designed
to thwart timing attacks. The implementations of CSIDH that we attacked
in this work are constant-time, but based on dummy isogenies, which enable
our attack. CTIDH [12], a recent faster constant-time algorithm for CSIDH,
is also vulnerable to safe-error attacks. In this case, the attacks should oc-
cur during the dummy operations within the MatryoshkaIsogeny (cf. [12],
Section 5.2.2). Dummy-free implementations, which do also exist, are prob-
ably not vulnerable to the attacks presented in this paper; however, they are
prone to timing attacks. Future research therefore needs to find a way to
secure CSIDH at the same time against timing and safe-error attacks.

150 Chapter 5: Physical Attacks

5.3 Zero-Value and Correlation Attacks on
SIKE and CSIDH

This chapter is for all practical purposes identical to the paper Patient Zero
& Patient Six: Zero-Value and Correlation Attacks on CSIDH and SIKE [43]
authored jointly with Michael Meyer, Krijn Reijnders, and Marc Stöttinger,
which was published at SAC 2022.

5.3.1 Introduction

Isogeny-based cryptography is a promising candidate for replacing pre-
quantum schemes with practical quantum-resistant alternatives. In general,
isogeny-based schemes feature very small key sizes, while suffering from run-
ning times that are at least an order of magnitude slower than e.g. lattice-
or code-based schemes. Therefore, they present a viable option for appli-
cations that prioritize bandwidth over performance. SIKE [108], a key en-
capsulation mechanism (KEM) based on the key exchange SIDH [109], is
the lone isogeny-based participant of the NIST post-quantum cryptography
standardization process, and proceeded to the fourth round. In 2018, only
after the NIST standardization process started, the key exchange scheme
CSIDH was published [49]. Due to its commutative structure, a unique
feature among the known post-quantum schemes, CSIDH allows for a non-
interactive key exchange, which gained much attention among the research
community. Together with its efficient key validation, which enables a static-
static key setting, this makes CSIDH a promising candidate for a drop-in
replacement of classical Diffie–Hellman-style schemes.

In this work, we focus on a side-channel attack against CSIDH and
SIKE. We follow the main idea of [74], which reconstructs SIKE private
keys through zero-value attacks. This attack approach tries to force zero
values for some intermediate values of computations related to secret key
bits. By recognizing these zero values via side-channel analysis (SCA), this
allows an attacker to recover bits of the secret key. While coordinate ran-
domization is an effective method to mitigate general Differential Power
Analysis (DPA) and Correlation Power Analysis (CPA), it has no effect on
zero values, such that forcing their occurrence bypasses this countermeasure,
which is incorporated in SIKE [108].

While [74] focuses on forcing values connected to elliptic curve points
becoming zero, we discuss the occurrence of zero values as curve parameters.
This was first proposed in [120], yet [74] concludes that this idea is unlikely
to be applicable in a realistic scenario, since curve representations in SIKE
are such that they cannot produce a zero. In spite of this fact, we show
that some curves in SIKE and CSIDH, as e.g. the zero curve, have a special
correlation in these representations, which admits noticing their occurrence
via side-channel analysis.

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 151

The secret isogeny computation in SIKE essentially consists of two
phases: scalar multiplication and isogeny computation. In general, the
first phase is believed to be more vulnerable to physical attacks, since
private key bits are directly used there (see [61]). Our attack is the first
passive side-channel attack that exclusively targets the second phase of the
SIKE isogeny computation. Notably, countermeasures like coordinate/coef-
ficient randomization [61] or the CLN test [64, 74] do not prevent our attack.

Our contributions. In this work, we present zero-value and correlation
attacks against state-of-the-art implementations of CSIDH and SIKE. For
CSIDH, we use the fact that the zero curve E0, i.e., the Montgomery curve
with coefficient a = 0, represents a valid curve. Thus, whenever a secret
isogeny walk passes over this curve, this can be detected via side-channel
analysis. We present an adaptive attack that recovers one bit of the secret
key per round by forcing the target to walk over the zero curve.

Some implementations, like SQALE and SIKE, represent the zero curve
without using zero values. Nevertheless, in such a case there is often (with
probability 1/2 in SQALE and probability 1 in SIKE) a strong correlation
between certain variables, which also occurs for the supersingular six curve
E6 with coefficient a = 6. Via CPA, we exploit this correlation to detect
these curves.

Using these two approaches, we present a generic attack framework, and
apply this attack to the state-of-the-art CSIDH implementations SQALE [54]
and CTIDH [12] (Section 5.3.3), and to SIKE (Section 5.3.4). We explore the
practical feasibility of our attacks (Section 5.3.5), simulations (Section 5.3.6),
and different types of countermeasures (Section 5.3.7). Our code is available
in the public domain:

https://github.com/PaZeZeVaAt/simulation

Related work. The analysis of physical attacks on isogeny-based schemes
has only recently gained more attention, including both side-channel [74, 95,
120, 186, 193] and fault attacks [2, 40, 42, 94, 124, 177, 180]. Introduced
for classical elliptic curve cryptography (ECC) in [4, 100, 105], zero-value
attacks were adapted to SIKE in [74], which applies t-tests to determine
zero values within power traces [165].

An approach to identify certain structures within traces, similar to the
ones occurring in non-zero representations of the zero curve and six curve in
our case, are correlation-enhanced power analysis collision attacks [142], such
as [15] for ECC. This attack combines the concept of horizontal side-channel
analysis [147] with correlation-enhanced power analysis collision attacks to
extract leakage from a single trace.

We note that from a constructive perspective, our attack on SIKE is
similar to the attack in [2]. However, our attack is a passive side-channel

https://github.com/PaZeZeVaAt/simulation

152 Chapter 5: Physical Attacks

attack that is much easier to perform in practice compared to the elaborate
fault injection required for [2].

5.3.2 Preliminaries

We briefly introduce mathematical background related to isogeny-based
cryptography, and the schemes CSIDH [49] and SIKE [108]. For more
mathematical details, we refer to [70].

Mathematical background. Let Fq with q = pk denote the finite field
of order q, with a prime p > 3. Supersingular elliptic curves over Fq are
characterized by the condition #E(Fq) ≡ 1 mod p. Throughout this work,
we will only encounter group orders that are multiples of 4, and hence elliptic
curves E over Fq with j(E) ∈ Fq can be represented in Montgomery form:

Ea∶ y
2 = x3 + ax2 + x, a ∈ Fq. (5.3)

Given two such elliptic curves Ea and Ea′ , an isogeny is a morphism
φ ∶ Ea → Ea′ such that OEa ↦ OEa′ for the neutral elements of Ea and Ea′ .
In the context of isogeny-based cryptography, we are only interested in sepa-
rable isogenies, which are characterized by their kernel (up to isomorphism):
A finite subgroup G ⊂ Ea(Fq) defines a separable isogeny φ ∶ Ea → Ea/G and
vice versa. In such a case, the degree of φ is equal to the size of its kernel, ∣G∣.
For any isogeny φ ∶ Ea → Ea′ , there is a unique isogeny φ̂ ∶ Ea′ → Ea such that
φ̂ ○φ = [deg(φ)] is the scalar point multiplication on Ea by deg(φ). We call
φ̂ the dual isogeny. Two elliptic curves Ea and Ea′ over Fq are isogenous, i.e.,
there exists an isogeny between them, if and only if #Ea(Fq) =#Ea′(Fq).

5.3.2.1 CSIDH

In the context of CSIDH, we choose p of the form p+1 = h ⋅∏
n
i=1 ℓi and work

with supersingular elliptic curves over Fp. Each ℓi is a small odd prime, and
h is a suitable cofactor to ensure p is prime, with the additional requirement
that 4 ∣ h. This ensures that the group order p+1 is a multiple of 4, and any
such supersingular elliptic curve can be uniquely represented in Montgomery
form [49].

We are interested in specific isogenies li (of degree ℓi) that are defined
by the kernel G = E[ℓi]∩E[π − 1], where π denotes the Frobenius endomor-
phism, i.e., Fp-rational points that have ℓi-torsion. As Ea has p + 1 points
over Fp, we get Ea(Fp) ≅ Zh ×∏

n
i=1Zℓi . This implies there are ℓi of such

points P ∈ E[ℓi] ∩E[π − 1], and ℓi − 1 of these (all but the point OEa) will
generate G. The codomain Ea′ of such an isogeny is again supersingular and
so ∣Ea′(Fp)∣ = p+1, which implies li can also be applied to Ea′ . This implies
a group action of the elements li on the supersingular curves Ea over Fp,

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 153

which we denote by [li]∗Ea. In particular, this group action is commutative:
[lilj]∗Ea ≅ [li]∗[lj]∗Ea ≅ [lj]∗[li]∗Ea ≅ [lj li]∗Ea. The dual isogeny asso-
ciated to l is denoted as l−1, and is defined by the kernel G = E[ℓi]∩E[π+1].

The CSIDH scheme. The CSIDH scheme is based on the group action as
described above: We apply each of the n different l±1i a number of times to
a given curve Ea, and we denote this number by ei. Hence, the secret key is
some vector of n integers (e1, . . . , en) defining an element a =∏

n
i=1 l

ei
i which

we can apply to supersingular curves Ea over Fp. There is some variation
between different proposals on where ei is chosen from: The original proposal
of CSIDH-512 picks ei ∈ {−5, . . . ,5}, but one can also vary the bound mi per
ei. The key space is of size ∏(2mi+1). For the original CSIDH-512 proposal
with mi = 5 and n = 74, this gives roughly size 2256.

The public key is the supersingular curve Ea corresponding to applying
the secret key a to the publicly known starting curve E0 ∶ y

2 = x3 + x:

Ea = a ∗E0 = l
e1
1 ∗⋯ ∗ lenn ∗E0. (5.4)

To derive a shared secret between Alice and Bob with secret keys a and
b and given public keys Ea = a ∗E0 and Eb = b ∗E0, Alice simply computes
Eab = a ∗ Eb and Bob computes Eba = b ∗ Ea. From the commutativity of
the group action, we get Eab ≅ Eba.

Security of CSIDH. The classical security relies mostly on the size of
the keyspace ∏(2mi + 1), but the quantum security of CSIDH is heavily
dependent on the size of the group generated by these elements li. It is
heuristically assumed that the li generate a group of size approximately

√
p.

While the original CSIDH proposal considered a 512-bit prime p sufficient
for NIST security level 1 [49], its exact quantum security is debated [23, 158,
35, 54]. For instance, [54] claims that 4096-bit primes are required for level
1 security. Note that the key space is not required to cover the full group
of size roughly

√
p, but can be chosen as a large enough subset, except for

particularly bad choices like subgroups. At larger prime sizes, the number n
of small primes ℓi grows, and therefore it becomes natural to pick secret key
vectors from {−1,0,1}n resp. {−1,1}n for primes sizes of at least 1792 resp.
2048 bits. This allows for a large enough key space for classical security,
while increasing p for increased quantum security.

We note that the exact quantum security of CSIDH remains unclear,
and thus work on efficient and secure implementations for both smaller and
larger parameters continues to appear, e.g. in [12, 54].

Constant-time implementations. CSIDH is inherently difficult to im-
plement in constant time, as this requires that the timing of the execution
is independent of the respective secret key (e1, . . . , en). However, picking a
secret key vector (e1, . . . , en) translates to the computation of ∣ei∣ isogenies

154 Chapter 5: Physical Attacks

of degree ℓi, which directly affects the timing of the group action evaluation.
One way to mitigate this timing leakage is by using dummy isogenies: We
can keep the total number of isogenies per degree constant by computing mi

isogenies of degree ℓi, but discarding the results of mi − ∣ei∣ of these, effec-
tively making them dummy computations [137, 136]. Several optimizations
and different techniques have been proposed in the literature [154, 51, 56].

The latest and currently most efficient variant of constant-time imple-
mentations of CSIDH is CTIDH [12]. In contrast to sampling private key vec-
tors such that ei ∈ {−mi, . . . ,mi}, CTIDH uses a different key space that ex-
ploits the approach of batching the primes ℓi. We define batches B1, . . . ,BN

of consecutive primes of lengths n1, . . . , nN , i.e., B1 = (ℓ1,1, . . . , ℓ1,n1) =
(ℓ1, . . . , ℓn1), B2 = (ℓ2,1, . . . , ℓ2,n2) = (ℓn1+1, . . . , ℓn1+n2), et cetera. We write
ei,j for the (secret) coefficient associated to ℓi,j . Instead of defining bounds
mi for each individual ℓi so that ∣ei∣ ≤ mi, CTIDH uses bounds Mi for the
batch Bi, i.e., we compute at most Mi isogenies of those degrees that are
contained in Bi. That is, the key sampling requires ∣ei,1∣ + ⋅ ⋅ ⋅ + ∣ei,ni ∣ ≤Mi.
CTIDH then adapts the CSIDH algorithm such that the distribution of the
Mi isogenies among degrees of batch Bi does not leak through the timing
channel. Among other techniques, this involves Matryoshka isogenies, first
introduced in [23], that perform the exact same sequence of instructions
independent of its isogeny degree ℓi,j ∈ Bi.

The main advantage of CTIDH is the ambiguity of the isogeny com-
putations: From a time-channel perspective, a Matryoshka isogeny for
Bi could be an ℓi,j-isogeny for any ℓi,j ∈ Bi. Thus, in comparison to the
previous CSIDH algorithms, CTIDH covers the same key space size in fewer
isogenies. For instance, the previously fastest implementation of CSIDH-512
required 431 isogenies in total [3] (including dummies), whereas CTIDH [12]
requires only 208 isogenies (including dummies) for the same key space size.
This leads to an almost twofold speedup.

Representation of Montgomery coefficients. To decrease computa-
tional costs by avoiding costly inversions, the curve Ea is almost always
represented using projective coordinates for a ∈ Fp. The following two are
used most in current CSIDH-based implementations:

• the Montgomery form (A ∶ C), such that a = A/C, with C non-zero,

• and the alternative Montgomery form (A+2C ∶ 4C), such that a = A/C,
with C non-zero.

The alternative Montgomery form is most common, as it is used in pro-
jective scalar point multiplication formulas. Hence, in most state-of-the-art
implementations of CSIDH-based systems, the Montgomery coefficient a
is mapped to alternative Montgomery form and remains in this form until
the end, where it is mapped back to affine form for the public key resp.

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 155

shared secret (e.g., in SQALE [54]). CTIDH [12] switches between both
representations after each isogeny, and maps back to affine a = A/C at the
end. For most values of (A ∶ C) and (A+2C ∶ 4C), a = A/C represents either
an ordinary or a supersingular curve. The exceptions are C = 0, which
represents no algebraic object, and A = ±2C, which represents the singular
curves E±2. Specifically the supersingular zero curve E0 is represented as
(0 ∶ C) in Montgomery form and (2C ∶ 4C) in alternative Montgomery form,
where C ∈ Fp can be any non-zero value.

Isogeny computation in projective form. When using projective rep-
resentations to compute isogenies with domain Ea where a is represented as
(A ∶ C), most implementations use projectivized versions of Vélu’s formulas,
described in [184, 141, 19]. To compute the action of l±1i on Ea, one finds
a point P of order ℓi on Ea and computes the x-coordinates of the points
{P, [2]P, . . . , [ℓ−1

2
]P}. Let (Xk ∶ Zk) denote the x-coordinate of [k]P in

projective form. Then, the projective Montgomery coefficient (A′ ∶ C ′) of
Ea′ = li ∗Ea using Montgomery form (A ∶ C) is computed by

Bz =

ℓ−1
2

∏
k=1

Zk, A′ = (A + 2C)ℓ ⋅B8
z , (5.5)

Bx =

ℓ−1
2

∏
k=1

Xk, C ′ = (A − 2C)ℓ ⋅B8
x, (5.6)

and when using alternative Montgomery form (α ∶ β) = (A + 2C ∶ 4C) by

Bz =

ℓ−1
2

∏
k=1

Zk, α′ = αℓ ⋅B8
z , (5.7)

Bx =

ℓ−1
2

∏
k=1

Xk, β′ = α′ − (α − β)ℓ ⋅B8
x, (5.8)

where (α′ ∶ β′) represents Ea′ in alternative Montgomery form. Note that
the values (A+2C) in (5.5), (A−2C) in (5.6), α in (5.7) and (α−β) in (5.8)
are never zero: In all cases, this implies A/C = ±2, i.e., the singular curves
E±2.

Remark 7. So far, we know of no deterministic implementations based on
the class group action. This is because in order to perform the isogenies, all
current implementations sample a random point P on the curve and com-
pute the scalar multiple of P required to perform isogenies. The projective
coordinates (Xk ∶ Zk) are then non-deterministic, and hence the output of
Equations (5.5) to (5.8) is non-deterministic. This implies that the repre-
sentation of a as (A ∶ C) or (A+2C ∶ 4C) is non-deterministic after the first
isogeny.

156 Chapter 5: Physical Attacks

5.3.2.2 SIKE

In SIKE, we pick a prime of the form p = 2eA ⋅ 3eB − 1 such that 2eA ≈ 3eB ,
and work with supersingular elliptic curves over Fp2 in Montgomery form.
We choose to work with curves such that #Ea(Fp2) = (p + 1)2, and we have
Ea(Fp2) ≅ Z2

2eA × Z2
3eB for these curves. Thus, the full 2eA- and 3eB -torsion

subgroups lie in Ea(Fp2). Any point RA of order 2eA then uniquely (up to
isomorphism) determines a 2eA -isogeny and codomain curve Ea′ = Ea/⟨RA⟩
with kernel ⟨RA⟩. For choosing an appropriate point, the SIKE setup defines
basis points PA and QA of the 2eA -torsion of the public starting curve.
Picking an integer skA ∈ [0,2

eA −1] and computing RA = PA + [skA]QA then
results in choosing such a kernel generator RA of order 2eA .

In practice, such a 2eA-isogeny is computed as a sequence of 2-isogenies
of length eA. This can be interpreted as a sequence of steps through a
graph: For a prime ℓ with p ∤ ℓ, the ℓ-isogeny graph consists of vertices
that represent (j-invariants of) elliptic curves, and edges representing ℓ-
isogenies. Due to the existence of dual isogenies, edges are undirected. For
supersingular curves, this graph is an (ℓ + 1)-regular expander graph and
contains approximately p/12 vertices. Hence, a sequence of 2-isogenies of
length eA corresponds to a walk of length eA through the 2-isogeny graph.
An analogous discussion applies to the case of 3eB -isogenies. Note that for
reasons of efficiency, we often combine two 2-isogeny steps into one 4-isogeny.
The secret keys skA, skB can be decomposed as

skA =
e2−1
∑
i=0

ski ⋅ 2
i ski ∈ {0,1}, skB =

e3−1
∑
i=0

ski ⋅ 3
i ski ∈ {0,1,2}.

We refer to these ski as the bits resp. the trits of the secret key skA resp.
skB . For a given sk, we use sk<k to represent the key up to the k-th bit/trit
skk−1.

The SIKE scheme. The main idea behind SIDH and SIKE is to use
secret isogenies to set up a key exchange scheme resp. key encapsulation
mechanism. SIDH fixes E6 as starting curve, and torsion basis points PA,QA

and PB ,QB . It uses the following subroutines:

• KeyGenA samples a secret key skA ∈ [0,2
eA − 1], computes RA = PA +

[skA]QA, and the secret isogeny ϕA ∶ E6 → E6/⟨RA⟩. It outputs the
key pair (skA,pkA), where pkA = (ϕA(PB), ϕA(QB), ϕA(QB − PB)).

• KeyGenB proceeds analogously with swapped indices A and B. The
public key is pkB = (ϕB(PA), ϕB(QA), ϕB(QA − PA)).

• DeriveA takes as input (skA,pkB) = (SA, TA, TA − SA). It computes
the starting curve EB from the points in pkB , the secret point R′

A =
SA + [skA]TA, and the isogeny ϕ′A ∶ EB → EB/⟨R

′
A⟩.

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 157

• DeriveB proceeds analogously with input (skB ,pkA), and computes
the codomain curve EA/⟨R

′
B⟩.

When running this key exchange, both parties arrive at a curve (isomorphic
to) E6/⟨RA,RB⟩, and (a hash of) its j-variant can serve as a shared secret.

SIKE uses the SIDH subroutines KeyGen and Derive to construct three
algorithms KeyGen, Encaps, and Decaps. Furthermore, we define h and h′ to
be cryptographic hash functions.

• KeyGen runs KeyGenB to generate a key pair (sk,pk). This key pair
can be chosen to be static.

• Encaps picks a message m, runs KeyGenA to generate an ephemeral
key pair (ek, c) with ek = h(pk,m), and computes the shared secret
s through DeriveA(ek,pk). It encapsulates m as a ciphertext ct =
(c, h′(s)⊕m).

• Decaps receives a ciphertext (c0, c1), recomputes the shared secret s′

from DeriveB(sk, c0), and the message m′ ← c1 ⊕ h′(s′). It recom-
putes ek′ = h(pk,m′) and checks if c0 = c by running DeriveA(ek

′,pk).
Passing this check guarantees that the ciphertext has been generated
honestly, and m′ =m can be used to set up a session key.

Representation of Montgomery coefficients. As in CSIDH, the curve
Ea is almost always represented using projective coordinates, with the caveat
that a ∈ Fp2 . The following two representations are used throughout SIKE
computations, although in different subroutines.

• The alternative Montgomery form (A + 2C ∶ 4C), such that a = A/C
with C non-zero. This representation is used for Alice’s computations
as it is the most efficient for computing 2-isogenies. It is often written
as (A+

24 ∶ C24) with A+
24 = A + 2C and C24 = 4C so that a = 2(2A+

24 −
C24)/C24.

• The form (A + 2C ∶ A − 2C), such that a = A/C, with C non-zero.
This representation is used for Bob’s computations as it is the most
efficient for computing 3-isogenies. It is often written as (A+

24 ∶ A
−
24)

with A+
24 = A+2C and A−

24 = A−2C so that a = 2(A+
24+A

−
24)/(A

+
24−A

−
24).

Note that the values A,C,A+
24,A

−
24 and C24 are in Fp2 . When necessary,

we write them as α + βi with α,β ∈ Fp and i2 = −1. Equal to CSIDH,
both forms represent either an ordinary or a supersingular curve, with the
exceptions C = 0, which represents no algebraic object, and A = ±2C, which
represents the singular curves E±2.

158 Chapter 5: Physical Attacks

For the rest of the paper, we are interested in representations of the
supersingular six curve E6. Fortunately, E6 is represented in both forms as
(8C ∶ 4C), with C = α + βi ∈ Fp2 any non-zero element. For the goal of the
paper, this means that the analysis is similar for both forms.

Isogeny computation in projective form. SIKE uses the above pro-
jective representations to compute the codomain Eã of a 3- or 4-isogeny
ϕ ∶ Ea → Eã.

4-isogeny. Given a point P of order 4 on Ea with x-coordinate x(P) =
(X ∶ Z), the codomain Eã = Ea/⟨P ⟩ with ã represented by (Ã+

24 ∶ C̃24) is
computed by

Ã+
24 = 4 ⋅X4, C̃24 = 4 ⋅Z4. (5.9)

3-isogeny. Given a point P of order 3 on Ea with x-coordinate x(P) =
(X ∶ Z), the codomain Eã = Ea/⟨P ⟩ with ã represented by (Ã+

24 ∶ Ã
−
24) is

computed by

Ã+
24 = (3X +Z)3 ⋅ (X −Z), Ã−

24 = (3X −Z)3 ⋅ (X +Z). (5.10)

5.3.3 Recovering CSIDH keys with E0 side-channel
leakage

In this section, we explore how side-channel information can leak information
on secret isogeny walks. As shown in [74], it is possible to detect zero values
in isogeny computations using side-channel information. In Section 5.3.3.1,
we specifically explore how both representations of the zero curve E0, i.e.
(0 ∶ C) and (2C ∶ 4C), leak secret information, even though the value C ∈ Fp

is assumed to be a uniformly random non-zero value. As E0 is always a
valid supersingular Fp-curve in CSIDH, we can always construct a walk that
potentially passes over E0. This allows us to describe a generic approach
to leak a given bit of information of the secret isogeny walk, hence, a gen-
eral attack on the class group action as introduced in CSIDH. We apply
this attack in more detail to the two current state-of-the-art cryptosystems
based on this class group action: SQALE in Section 5.3.3.2 and CTIDH in
Section 5.3.3.3. We discuss their practical feasibility in Section 5.3.5 and
simulate these attacks in Section 5.3.6. We note that our attack applies to
all variants of CSIDH that we know of, e.g. from [49, 51].

Throughout this work, we assume a static-key setting, i.e., that a long-
term secret key a is used, and that the attacker can repeatedly trigger key
exchange executions on the target device using public key curves of their
choice. Formally, this means that we adaptively feed curves EPK and get side-
channel information on the computations a∗EPK. We exploit this information
to reveal a bit by bit.

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 159

5.3.3.1 Discovering a bit of information on a secret isogeny walk

Detecting E0 in Montgomery form. As described in Remark 7, the
representation of the Montgomery coefficient as (A ∶ C) or (A + 2C ∶ 4C) is
non-deterministic after the first isogeny, so they effectively contain random
Fp-values, representing the affine Montgomery coefficient a. This makes
it hard to get any information on Ea using side channels. However, in
Montgomery form the curve E0 is special: It is simply represented by (0 ∶ C)
for some C ∈ Fp. We define such a representation containing a zero a zero-
value representation.

Definition 21. Let Ea be an elliptic curve over Fp. A zero-value repre-
sentation is a representation of the Montgomery coefficient a in projective
coordinates (α ∶ β) such that either α = 0 or β = 0.

Clearly, a representation of E0 in Montgomery form must be a zero-value
representation. As known for ECC and SIKE, an attacker can observe
zero-value representations in several different ways using side-channel
analysis [74]. We will expand on this in Section 5.3.5 to show that E0 leaks
secret information in implementations that use Montgomery form.

Detecting E0 in alternative Montgomery form. Using the alternative
Montgomery form, no non-singular curve has a zero-value representation, as
(A + 2C ∶ 4C) can only be zero for A = −2C corresponding to a = −2, which
represents the singular curve E−2. Thus, the alternative Montgomery form
avoids the side-channel attack described above. Nevertheless, the represen-
tation of E0 is still unusual: Whenever 2C is smaller than p/2, doubling 2C
does not require a modular reduction, and hence the bit representation of 4C
is precisely a bit shift of 2C by one bit to the left. Such strongly correlated
values can be observed in several ways using side-channel analysis, as we
detail later in Section 5.3.5.

Definition 22. Let Ea be an elliptic curve over Fp. A strongly-correlated
representation is a representation of the Montgomery coefficient a in projec-
tive coordinates (α ∶ β) such that (α,β) ∈ F2

p is distinguishable from random

pairs (γ, δ) ∈ F2
p.

For E0, for any non-zero value C with 2C ≤ p/2, the representation in
alternative Montgomery form by (2C ∶ 4C) is a strongly-correlated repre-
sentation. As C is effectively random during the computation of the class
group action, in roughly 50% of the cases where we pass over E0, the rep-
resentation is strongly correlated. For random values of a, the values of
(A + 2C ∶ 4C) are indistinguishable from random (γ ∶ δ), and so an attacker
can differentiate E0 from such curves. From this, an attacker only needs a
few traces to determine accurately whether a walk passes over E0 or not, as
discussed in Section 5.3.5.

160 Chapter 5: Physical Attacks

Remark 8. Other curves have strongly-correlated representations too, e.g.,
the curve E6 requires A = 6C which gives (8C ∶ 4C) with C ∈ Fp random and
non-zero, and so E6 can be detected in precisely the same way as E0. For
simplicity, we focus on the zero curve in our CSIDH attack. We note that
analyzing this attack to any curve with strongly-correlated representations is
of independent interest for CSIDH and other isogeny-based schemes (such
as SIKE).

Remark 9. In the case where 2C is larger than p/2, the modular reduction
by p decreases the correlation between 2C and 4C significantly, which is
why we disregard these cases. However, a modular reduction does not affect
all bits, and so this correlation remains for unaffected bits. Especially for
primes with large cofactor 2k in p + 1, or primes close to a power of 2, the
correlation between unaffected bits should be exploitable. For the primes used
in the CSIDH instances in this work, this effect is negligible. However, the
primes used in SIDH and SIKE do have this form and we exploit this in
Section 5.3.4.

The idea is now to detect E0 in a certain step k of the computation a∗EPK.
In order to ensure that this happens the computation needs to be performed
in a known order of isogeny steps E → l(k) ∗E. In general, by the way how
isogenies are computed, such a step can fail with a certain probability. The
following definition takes this into account.

Definition 23. Let a be a secret isogeny walk. An ordered evaluation of
a ∗E is an evaluation in a fixed order

l(n) ∗ . . . ∗ l(1) ∗E

of n steps, assuming that no step fails. We write ak ∗E for the first k steps
of of such an evaluation,

l(k) ∗ . . . ∗ l(1) ∗E.

We define pa resp. pak
as the probability that a resp. ak is evaluated without

failed steps.

Generic approach to discover isogeny walks using E0. Given the abil-
ity to detect E0 in a walk for both the Montgomery form and the alternative
Montgomery form, we sketch the following approach to discover bits of a se-
cret isogeny walk a that has an ordered evaluation. Assuming we know the
first k−1 steps l(k−1)∗ . . .∗ l(1) in the secret isogeny walk a, denoted by ak−1,
we want to see if the k-th step l(k) equals li or l−1i for some i. We compute
Ea = l

−1
i ∗E0 and Ea′ = l

−1
i ∗Ea, and as a public key we use EPK = a

−1
k−1 ∗Ea.

Then, when applying the secret walk a to EPK, the k-th step either goes over
E0 or over Ea′ . From side-channel information, we observe if the k-th step

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 161

EPK Ea

Ea′

E0

e = −
1

e = 1

✗

✓

SCA

SCA

Figure 5.5: Generic approach to discover secret bits using side-channel in-
formation.

applies lei = l
1
i or lei = l

−1
i , and set l(k) = lei , as shown in Figure 5.5. Then we

repeat with ak = l
e
i ⋅ ak−1.

If E0 is not detected in the above setting, i.e. e = −1, we can confirm this
by an additional measurement: We compute Ẽa = l ∗ E0 and Ẽa′ = l ∗ Ẽa,
and use ẼPK = a

−1
k−1 ∗ Ẽa as public key. If e = −1, the isogeny walk now passes

over E0, which can be recognized via side-channel analysis. More formally,
we get:

Lemma 2. Let a be any isogeny walk of the form a = ∏ leii . Assume the
evaluation of a is an ordered evaluation. Then, there exists a supersingular
curve EPK over Fp such that a ∗EPK passes over E0 in the k-th step.

This generic approach has a nice advantage: If one detects the k-th step
to walk over E0, this confirms all previous steps were guessed correctly. In
other words, guessing wrongly in a certain step will be noticed in the next
step: Denote a wrong guess by awrong

k = l−e ⋅ak−1. The attacker computes Ea

from E0 so that l′ ∗Ea = E0 and gives the target EPK such that awrong
k ∗EPK =

Ea. Due to the wrong guess, neither e = 1 nor e = −1 lead to E0, as the
actual secret walk a leads to Ea′ = ak ∗ EPK, and the case e = 1 leads to
E¬0 = l

′ ∗Ea′ = l
−2e ∗E0, as shown in Figure 5.6.

Remark 10. Note that EPK given by Lemma 2 is a valid CSIDH public key,
so public key validation (see [49]) does not prevent this attack.

Probability of a walk passing over E0. Due to the probabilistic nature of
the computation of the class group action, not every evaluation a∗EPK passes
over E0 in the k-th step: One of the steps l(j) for 1 ≤ j ≤ k − 1 can fail with
probability 1/ℓ(j), and if so, the k-th step passes over a different curve. With
EPK as given by Lemma 2, the probability that an ordered evaluation a∗EPK

passes over E0 is then described by pak
, which we compute in Lemma 3.

Lemma 3. Let a be an isogeny walk computed as an ordered evaluation
l(n) ∗ . . . ∗ l(1) ∗ EPK. Then pak

, the probability that the first k isogenies
succeed, is

pak
∶=

k

∏
j=1

ℓ(j) − 1

ℓ(j)

162 Chapter 5: Physical Attacks

EPK

Ea

E0

Ea′

E¬0

wr
on
g
gu
es
s

actual step
e = −

1

e = 1

✗

✗

SCA

SCA

Figure 5.6: Due to a wrong guess of the isogeny path ak, an attacker mis-
computes EPK and the actual walk does not pass over E0.

where ℓ(j) is the degree of the isogeny l(j) in the j-th step.

As pak
describes the chance that we pass over E0 in the k-th step, 1/pak

gives us the estimated number of measurements of a ∗EPK we need in order
to pass over E0 in step k. We apply this more concretely in Sections 5.3.3.2
and 5.3.3.3.

Remark 11. Instead of learning bit by bit starting from the beginning of the
secret isogeny walk, we can also start at the end of the walk. To do so, we use
the twist E−t of the target’s public key Et, for which a∗E−t = E0. As for the
generic attack, we feed EPK = l

−1∗E−t and ẼPK = l∗E−t. The computation then
passes over E0 in the last step instead of the first. This approach requires
the same probability pak

to recover the k-th bit, but assumes knowledge of all
bits after k instead of before. Hence, we can discover starting and ending
bits of a in parallel.

5.3.3.2 Recovering secret keys in SQALE

SQALE [54] is the most recent and most efficient constant-time implementa-
tion of CSIDH for large parameters, featuring prime sizes between 1024 and
9216 bit. In this section, we explain how the attack from Section 5.3.3.1 can
be applied to SQALE, leading to a full key recovery. For concreteness, we
focus on SQALE-2048, which uses parameters n = 231 and secret exponents
ei ∈ {−1,1} for 1 ≤ i ≤ 221. The ℓi with i > 221 are not used in the group
action.

Algorithmic description of SQALE. Given a starting curve EA, the
SQALE implementation computes the group action in the following way:

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 163

• Sample random points P+ ∈ EA[π − 1] and P− ∈ EA[π + 1], and set
E ← EA.

• Iterate through i ∈ {1, . . . , n} in ascending order, and attempt to com-
pute ϕ ∶ E → leii ∗E using P+ resp. P−. Push both points through each
ϕ.

• In case of point rejections, sample fresh points and attempt to compute
the corresponding isogenies, until all leii have been applied.

In order to speed up computations, SQALE additionally pushes interme-
diate points through isogenies, which saves computational effort in following
steps [56]. However, the exact design of the computational strategy inside
CSIDH is not relevant for our attack. Using the above description, we sketch
the adaptive attack on SQALE-2048 to recover the secret key bit by bit. In
case of no point rejections, the order of steps in which a ∗EPK is computed
in SQALE is deterministic, and thus we can immediately apply Lemmas 2
and 3:

Corollary 7. If no point rejections occur, the computation a∗EPK in SQALE
is an ordered evaluation with

l(n) ∗ . . . ∗ l(1) ∗EPK = l
e221
221 ∗ . . . ∗ le11 ∗EPK.

Hence,

pak
=

k

∏
i=1

ℓi − 1

ℓi
.

SQALE uses coefficients in alternative Montgomery form (A + 2C ∶ 4C),
so that passing over the curve E0 can be detected as described in Sec-
tion 5.3.3.1.

Recovering the k-th bit. Recovering the k-th bit of a SQALE secret
key works exactly as described in Figure 5.5, as in a successful run SQALE
performs each step l±1i in ascending order. Thus, the k-th step, in a run
where the first k steps succeed, computes E → l±1k ∗ E. For the attack, we
assume knowledge of the first k − 1 bits of the secret to produce public keys
EPK resp. ẼPK that lead the target through E0 via an application of l−1k
resp. lk, as given by Lemma 2. For one of these cases, with probability pak

(Lemma 3), the target passes over E0 on the k-th step, and we learn the
k-th secret bit ek from side-channel information.

As k increases, pak
decreases: In order for the target to pass over E0

in one of the two cases, all previous isogenies have to succeed, for which
Corollary 7 gives the probability pak

. Thus, the fact that SQALE first
computes small-degree isogenies is slightly inconvenient for our attack, due
to their low success probabilities. Nevertheless, attacking the last round of

164 Chapter 5: Physical Attacks

SQALE-2048 has a success probability of roughly pa221 = ∏
221
j=1(ℓj − 1)/ℓj ≈

19.3%, so that in about 1 in 5 runs, every isogeny succeeds and we pass
over E0 for the 221-th bit, compared to 2 in 3 runs to pass over E0 for the
first bit (pa1 =

2
3
). This means that we need about three times as many

measurements to discover the last bit, than the first bit. Nonetheless the
required total number of measurements for all bits is very managable; we
get with Lemma 3:

Corollary 8. Assuming a pass over E0 leaks the k-th bit when the repre-
sentation is strongly correlated, the estimated number of measurements to
recover a SQALE-2048 key is

4 ⋅
221

∑
k=1

1

pak

= 4 ⋅
221

∑
k=1

k

∏
i=1

ℓi
ℓi − 1

≈ 4 ⋅ 1020.

Here, the factor 4 represents the fact that we need to feed both EPK

and ẼPK, and that only half the time (2C ∶ 4C) is strongly-correlated. In
practice, for more certainty, we increase the number of attempts per bit by
some constant α > 1, giving a total of α ⋅ 4 ⋅ 1020 expected attempts. We
detail this in Section 5.3.6.

5.3.3.3 Recovering secret keys in CTIDH

CTIDH [12] is the most efficient constant-time implementation of CSIDH
to date, although the work restricts to the CSIDH-512 and CSIDH-1024
parameter sets. We note that techniques from CTIDH can be used to
significantly speed up CSIDH for larger parameters too, yet this appears to
require some modifications that have not been explored in the literature yet.
In this section, we explain how zero-value curve attacks can be mounted on
CTIDH, leading to a partial or full key recovery, depending on the number
of measurements that is deemed possible. For concreteness, we focus on
the CTIDH parameter set with a 220-bit key space, dubbed CTIDH-511
in [12], which uses 15 batches of up to 8 primes. The bounds satisfy Mi ≤ 12.

Algorithmic description of CTIDH. Given a starting curve EA, CTIDH
computes the group action by multiple rounds of the following approach:

• Set E ← EA, sample random points P+ ∈ E[π − 1] and P− ∈ E[π + 1].

• Per batch Bi, (attempt to) compute ϕ ∶ E → l
sign(ei,j)
i,j ∗ E using P+

resp. P− (or dummy when all l
ei,j
i,j are performed). Push both points

through each ϕ.

• Repeat this process until all l
ei,j
i,j and dummy isogenies have been ap-

plied.

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 165

Furthermore, the following design choices in CTIDH are especially rele-
vant:

• Per batch Bi, CTIDH computes real isogenies first, and (potential)
dummy isogenies after, to ensure Mi isogenies are computed, indepen-
dently of (ei,j).

• Per batch Bi, CTIDH computes the actual ℓi,j-isogenies in ascending
order.

• Per batch Bi, CTIDH scales the point rejection probability to the
largest value, 1/ℓi,1. This slightly changes the computation of pak

.

• The order in which batches are processed is deterministic.

Example 1: Let B1 = {3,5} with M1 = 6, and let e1,1 = 2 and e1,2 = −3.
For B1, we first try tsectio compute E → l1 ∗E, until this succeeds twice.
Then, we try to compute E → l−12 ∗E, until this succeeds three times. After
the real isogenies, we try to compute the remaining B1-dummy isogeny.
All B1-isogenies, including dummies, have success probability 2/3. If all
six of the B1-isogenies are performed but other Bi are unfinished, we skip
B1 in later rounds.

As for SQALE, the above description gives us that the order in which
each l is applied in CTIDH is deterministic, assuming that none of the steps
fail, and so we get with Lemmas 2 and 3 again:

Corollary 9. If no point rejections occur, the computation a∗E in CTIDH
is an ordered evaluation l(n) ∗ . . .∗ l(1) ∗E, with n = ∑Mi, including dummy
isogenies.

Hence we can perform the adaptive attack on CTIDH-511 to recover the
secret key bit by bit. The CTIDH implementation of [12] uses coefficients in
alternative Montgomery form (A + 2C ∶ 4C), but passes over Montgomery
form (A ∶ C) after each isogeny. Hence, E0 will always have a zero-value
representation and we detect E0 as described in Section 5.3.3.1. In fact, we
argue in Section 5.3.5 that zero-value representations are easier to detect
than strongly-correlated representations.

Recovering the k-th bit. CTIDH introduces several difficulties for our
attack, compared to SQALE. In particular, let Bi = {ℓi,1, . . . , ℓi,ni} be the
batch to be processed at step k. Then, since usually ni > 1, we do not get a
binary decision at each step as depicted in Figure 5.5, but a choice between
2ni real isogeny steps l±1i,j , or possibly a dummy isogeny. In practice, with
high probability, we do not need to cover all 2ni +1 options, as the following
example shows.

166 Chapter 5: Physical Attacks

Example 2: As CTIDH progresses through the batch ascendingly from
ℓi,1 to ℓi,ni , the first step of a batch can often be recovered as in Figure 5.5,
using public keys that are one ℓi,1-isogeny away from E0 respectively. If
both do not pass over E0, we deduce that ei,1 = 0, and we repeat this
approach using an ℓi,2-isogeny. In case of a successful attempt for ℓi,j ,
we learn that the respective key element satisfies ei,j ≤ −1 resp. ei,j ≥ 1,
depending on which of the binary steps was successful.29 If we do not
succeed in detecting E0 after trying all ℓ±1i,j in Bi, we learn that the target
computes a Bi-dummy isogeny, and so all ei,j = 0 for ℓi,j ∈ Bi. We can
easily confirm dummy isogenies: If the k-th step is a dummy isogeny, then
using EPK such that a ∗EPK passes over E0 in step k − 1, we do not move
to a different curve in step k and so we observe E0 using side-channel
information after steps k − 1 and k.

Our approach to recover the k-th bit in CTIDH-511 only differs slightly
from Section 5.3.3.2: Given the knowledge of the secret path up to step
k − 1, we recover the k-th step by iterating through the target batch Bi =
{ℓi,1, . . . , ℓi,ni}, until we detect E0 for a given degree ℓi,j , or otherwise assume
a dummy isogeny. This iteration becomes easier in later rounds of each batch:

• If a previous round found that some ei,j is positive, we only have to
check for positive ℓi,j-isogeny steps later on (analogously for negative).

• If a previous round computed an ℓi,j-isogeny, we immediately know
that the current round cannot compute an ℓi,h-isogeny with h < j.

• If a previous round detected a dummy isogeny for batch Bi, we can
skip isogenies for Bi in all later rounds, since only dummy isogenies
follow.

Thus, knowledge of the previous isogeny path significantly shrinks the search
space for later steps. As in SQALE, the probability pak

decreases the further
we get: Batches containing small degrees ℓi appear multiple times, and steps
with small ℓi have the most impact on pak

. For the last step l(n), the
probability that all steps l(k) in CTIDH-511 succeed without a single point
rejection, is roughly 0.3%. This might seem low at first, but the number of
measurements required to make up for this probability does not explode; we
are able to recover the full key with a reasonable amount of measurements as
shown in Section 5.3.6. Furthermore, this probability represents the absolute
lower bound, which is essentially the worst-case scenario: It is the probability
that for the worst possible key, with no dummy isogenies, all steps must
succeed in one run. In reality, almost all keys contain dummy isogenies, and
we can relax the requirement that none of the steps fail, as failing dummy
isogenies do not impact the curves passed afterwards.

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 167

Example 3: Let B1 = {3,5} with M1 = 6 as in CTIDH-511. Say we
want to detect some step in the eighth round of some Bi for i > 1; it is
not relevant in which of the seven former rounds the six B1-isogenies are
computed, and thus we can effectively allow for one point rejection in
these rounds. This effect becomes more beneficial when dummy isogenies
are involved. For example, if three of these six B1-isogenies are dummies,
we only need the three actual B1-isogenies to be computed within the first
seven rounds. Furthermore, after detecting the first dummy B1-isogeny,
we do not need to attack further B1-isogenies as explained above, and
therefore save significant attack effort.

Remark 12. The generic attack requires that all first k steps succeed. This
is not optimal: Assuming that some steps fail increases the probability of
success of passing over E0. For example, to attack isogenies in the sixth
round and knowing that e1,1 = 5, it is better to assume that one or two out of
these five fail and will be performed after the ℓi,j-isogeny we want to detect,
than it is to assume that all five of these succeed in the first five rounds. This
improves the success probability of passing over E0 per measurement, but
makes the analysis of the required number of measurements harder to carry
out. Furthermore, this optimal approach highly depends on the respective
private key. We therefore do not pursue this approach in our simulations. A
concrete practical attack against a single private key that uses this improved
strategy should require a smaller number of measurements.

Remark 13. For CTIDH with large parameters, one would expect more
large ℓi and fewer isogenies of low degrees, relative to CTIDH-511. This im-
proves the performance of our attack, as the probability of a full-torsion path
increases, and so we expect more measurements to pass over E0. However,
the details of such an attack are highly dependent on the implementation of
a large-parameter CTIDH scheme. As we know of no such implementation,
we do not analyze such a hypothetical implementation in detail.

Remark 14. At a certain point, it might be useful to stop the attack, and
compute the remaining key elements via a simple meet-in-the-middle search.
Especially for later bits, if some dummy isogenies have been detected and
most of the key elements ei,j are already known, performing a brute-force
attack may be faster than this side-channel attack.

5.3.4 Recovering SIKE keys with side-channel leakage
of E6

We now apply the same strategy from Section 5.3.3 to SIKE. In this whole
section, we focus on recovering Bob’s key skB by showing side-channel
leakage in DeriveB , used in Decaps. In general, the idea would apply as
well to recover Alice’s key skA in static SIDH or SIKE with swapped roles,

168 Chapter 5: Physical Attacks

as we do not use any specific structure of 3-isogenies. One can easily verify
that the attack generalizes to SIDH based on ℓA or ℓB-isogenies for any
ℓA, ℓB . We repeat many of the general ideas from Section 5.3.3, with some
small differences as SIKE operates in isogeny graphs over Fp2 instead of Fp.
Fortunately, these differences make the attack easier.

Detecting E6. As remarked in Section 5.3.2, for both representations used
in SIDH and SIKE, the curve E6 is represented as (8C ∶ 4C), with C =
α+βi ∈ Fp2 non-zero. Similar to the CSIDH situation, whenever 4α or 4β is
smaller than p/2, doubling 4C does not require a modular reduction for these
values, and hence the bit representation of 8α resp. 8β of 8C is precisely a
bit shift of 4α resp. 4β of 4C by one bit to the left. Such strongly-correlated
values can be observed in several ways using side-channel analysis, as we
detail later in Section 5.3.5. Different from the CSIDH situation are the
following key observations:

• The prime used in SIKE is of the form p = 2eA ⋅3eB −1. As observed in
Remark 9, this large cofactor 2eA in p+ 1 implies a modular reduction
does not affect the lowest eA −1 bits, except for the shift. Hence, even
when 4α or 4β is larger than p/2, we see strong correlation between
their lowest bits.

• C is now an Fp2 value, so we get strong correlation between 8α and
4α and between 8β and 4β. This implies at least 2 ⋅ (eA − 1) strongly-
correlated bits in the worst case (25 %), up to 2 ⋅(log2(p)−1) strongly-
correlated bits in the best case (25%).

For random curves Ea, the representations of a are indistinguishable
from random (α + βi ∶ γ + δi), and so an attacker can differentiate E6 from
such curves. From this, an attacker only needs a few traces to determine
accurately whether a walk passes over E6 or not, as discussed in Section 5.3.5.

General approach to recover the k-th trit. Assuming we know the first
k − 1 trits ski of a secret key sk, e.g. sk<k−1 = ∑

k−2
i=0 ski ⋅ 3

i, we want to find

skk−1 ∈ {0,1,2}. We construct three secret keys, sk(0), sk(1), sk(2) as

sk(0) = sk<k−1 + 0 ⋅ 3k−1, sk(1) = sk<k−1 + 1 ⋅ 3k−1, sk(2) = sk<k−1 + 2 ⋅ 3k−1.

We must have sk<k = sk(i) for some i ∈ {0,1,2}. Thus, we use these three

keys to construct (see Lemma 4) three public keys pk(0),pk(1),pk(2) such

that DeriveB(sk
(i),pk(i)) computes E6. When we feed these three keys to

Bob, the computation DeriveB(sk,pk
(i)) will then pass over E6 in the k-th

step if and only if skk−1 = i. By observing E6 from side-channel information,
we find skk−1.

In this attack scenario, another key observation makes the attack
on SIDH and SIKE easier than the attack on CSIDH: The computation

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 169

DeriveB(sk,pk
(i)) always passes over the same curves, as there are no

“steps that can fail” as in CSIDH. We know with certainty that Bob will
pass over E6 in step k in precisely one of these three computations. Hence,
the number of traces required reduces drastically, as we do not need to
worry about probabilities, such as pak

, that we have for CSIDH.

Constructing pk(i) from sk(i) using backtracking. Whereas in CSIDH
it is trivial to compute a curve EPK such that a∗EPK passes over E0 in the k-
th step (see Lemma 2), in SIDH and SIKE it is not immediatly clear how to

construct pk(i) for sk(i). We follow [2, § 3.3], using backtracking to construct
such a pk.30 The main idea is that any sk<k corresponds to some kernel point
RB of order 3k for some k, so to an isogeny ϕ(k) ∶ E6 → E(k). Here, the trits
ski determine the steps

E6 = E
(0) sk0
Ð→ E(1)

sk1
Ð→ . . .

skk−1
ÐÐÐ→ E(k).

The dual isogeny ϕ̂(k) ∶ E(k) → E6 then corresponds to the kernel gener-
ator ϕ(k)([3eB−k]QB) (see [145]). This leads to [2, Lemma 2].

Lemma 4. Let sk be a secret key, and let Rk = [3
eB−k](PB + [sk<k]QB) so

that ϕ ∶ E6 → E(k) is the corresponding isogeny for the first k steps. Let
T ∈ E(k)[3eB] such that [3eB−k]T ≠ ±[3eB−k]ϕ(QB). Then

pk′ = (ϕ(QB) + [sk<k]T, −T, ϕ(QB) + [sk<k − 1]T)

is such that DeriveB(sk,pk
′) passes over E6 in the k-th step.

It is necessary that such a pk′ is not rejected by a SIKE implementation.

Corollary 10 ([2]). The points P ′ and Q′ for a pk′ = (P ′,Q′,Q′ − P ′)
as constructed in Lemma 4 form a basis for the 3eB -torsion of E(k). This
implies they are of order 3eB and pass the CLN test.

Given Lemma 4 and sk<k−1, we can therefore easily compute the

pk(i) corresponding to sk(i) for i ∈ {0,1,2}. One of the three attempts

DeriveB(sk,pk
(i)) will then pass over E6 in the k-th step, while the other

two will not. Only the representation of E6 by (8C ∶ 4C) is then strongly-
correlated, and by detecting this representation using side-channel informa-
tion, we recover skk−1.

Remark 15. A straightforward attack computes pk(0),pk(1) and pk(2), and
feeds all three to Bob, and so requires 3 traces to recover a single trit skk−1.

Clearly, when we already detect E6 in the trace of DeriveB(sk,pk
(0)), we

do not need the traces of pk(1) and pk(2), similarly for DeriveB(sk,pk
(1)).

30It is important that such a pk = (P,Q,Q −P) passes the CLN test [64]: P and Q are
both of order 3eB and [3eB−1]P ≠ [±3eB−1]Q, so that they generate E[3eB].

170 Chapter 5: Physical Attacks

This approach would require on average 1
3
⋅ 1 + 1

3
⋅ 2 + 1

3
⋅ 3 = 2 traces per trit.

We can do even better: if we do not detect E6 in both DeriveB(sk,pk
(0))

and DeriveB(sk,pk
(1)), we do not need a sample for DeriveB(sk,pk

(2)), as
skk−1 must equal 2. This gives 5

3
samples per trit, giving a total of 5

3
⋅ eB

traces.

5.3.5 Feasibility of obtaining the side-channel informa-
tion

In this section, we discuss the practical feasibility of obtaining the required
side-channel information.

Zero-value representations. For zero-value representations as in
CTIDH, where E0 is represented by (0 ∶ C) in Montgomery form, we
exploit side-channel analysis methods to distinguish between the zero
curve and others. In particular, as shown in [74], one can apply Welch’s
t-test [165] to extract the required information from the power consump-
tion of the attacked device. Further, as mentioned in [74], one can use
correlation-collision SCA methods to identify zero values using multiple
measurements. Therefore, the attack scheme as demonstrated in [74] to
SIKE can analogously be applied whenever zero-value representations occur.

Strongly-correlated representations. Our attack strategy for implemen-
tations using strongly-correlated representations, such as SQALE and SIKE,
is more challenging in practice, since no zero values occur. A näıve approach
to mount our attack for such instances would be to apply side-channel attacks
like CPA or DPA, and estimate or guess the values of intermediate codomain
curves. Revealing those intermediate values would require a fitting power
model and a sufficiently high signal-to-noise ratio (SNR).31 By exploiting
the pattern similarity in the strongly-correlated representation (2C ∶ 4C)
for SQALE or (8C ∶ 4C) for SIKE, as mentioned in Section 5.3.3.1 and
Section 5.3.4, we reduce the SNR required for successfully performing the
attack. To achieve this, we apply the concept of correlation-collision attacks,
so that there is no need to reveal the actual value of C via a sophisticated
power model.

We exploit side-channel correlation-collision attacks [142] to find similar
values by searching for strongly-correlated patterns versus non-correlated
patterns. Instead of measuring multiple computations to identify similar or
identical patterns, as in [142], we apply the concept of a horizontal side-
channel attack as in [147]. That is, we extract the required side-channel
information from a single segmented power trace. Such a segmented power

31SNR is the ratio between the variance of the signal containing the desired information
and the variance of noise. Too small SNR values make information and noise indistin-
guishable.

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 171

trace contains the power values of the processed limbs (each limb is 64 bits),
required to represent Fp-values, which form a fingerprint characteristic of
such a value. These fingerprints then serve as input to calculate the corre-
lation between 2C and 4C for SQALE, or 4α,4β,8α and 8β for SIKE, from
which we judge their similarity. For strongly-correlated representations of E0

and E6, this gives a higher correlation between the fingerprints than for rep-
resentations of random curves Ea as either (A+2C ∶ 4C) or (A+2C ∶ A−2C),
with A,C ≠ 0.

For both CSIDH attacks, we assume no point rejections prior to the
respective isogeny computation, so that the specific isogeny steps are known
in advance. For SIKE, there are no such probabilities involved in the isogeny
computation, and so here too the specific isogeny steps are known in advance.
Thus, in all cases, the points of interest (position of the limbs) within the
power trace are known in advance, and segmenting each power trace into
vectors of the corresponding processed limbs for mounting the correlation-
collision attack is easy.

5.3.6 Simulating the attacks on SQALE, CTIDH and
SIKE

To demonstrate our attacks, we implemented Python (version 3.8.10) sim-
ulations for our CTIDH-51132 and SQALE-204833 attacks, and a C simula-
tion of the attack on SIKE.34 The C code for key generation and collecting
the simulated power consumption were compiled with gcc (version 9.4.0).
Security-critical spots of the attacked C code remained unchanged in both
cases.

For the SQALE and CTIDH attacks, the implemented simulation works
as follows: First, we generate the corresponding public keys EPK and ẼPK for
the current k-th step, as described in Section 5.3.3.1. Then we collect the
bit values of the resulting codomain curve after the computation of the k-th
step E ← l(k) ∗E in the group action a ∗EPK resp. a ∗ ẼPK to simulate the
power consumption.

We calculate the Hamming weight of these values and add a zero-mean
Gaussian standard distribution to simulate noise in the measurement. We
picked different values of the standard deviation to mimic realistic power
measurements with different SNR values. By varying the SNR in such a way,
we can determine up to which SNR our attacks are successful, and compare
this to known SNR values achieved in physical attacks. For SQALE and
CTIDH, we are only interested in power traces passing over E0, and so we
need the first k steps to succeed. We therefore take enough samples to ensure
high probability that passing over E0 happens multiple times for either EPK

32http://ctidh.isogeny.org/high-ctidh-20210523.tar.gz
33https://github.com/JJChiDguez/sqale-csidh-velusqrt, commit a95812f
34https://github.com/Microsoft/PQCrypto-SIDH, commit ecf93e9

http://ctidh.isogeny.org/high-ctidh-20210523.tar.gz
https://github.com/JJChiDguez/sqale-csidh-velusqrt
https://github.com/Microsoft/PQCrypto-SIDH

172 Chapter 5: Physical Attacks

or ẼPK. Finally, based on the set of collected bit vectors for all these samples,
we decide on which of the two cases contains paths over E0, and therefore
reveal the k-th bit of the secret key.

For the SIKE attack, we generate pk(0),pk(1) and pk(2) for the current
k-th step, as described in Section 5.3.4, and collect the bit values of the
resulting codomain curve in the computation of the k-th step of DeriveB
in Decaps. For simplicity, there is no noise in the simulation, as the results
are exactly the same as for the SQALE situation after extracting the bit
values. Deciding which sample has strongly-correlated values is easy, as is
clear from Figure 5.7.

As described in previous sections, due to the different representations, the
decision step differs between CTIDH and SQALE. For SIKE, the probability
to pass over E6 is 100%, and so a single sample per pk(i) is enough to decide
what the k-th trit skk−1 is.

In order to reduce the running time of our simulations for SQALE and
CTIDH, we terminate each group action run after returning the required
bit values of the k-th step. Furthermore, we implemented a threaded
version so that we collect several runs in parallel, which speeds up the
simulation. All experiments were measured on AMD EPYC 7643 CPU cores.

Attacking CTIDH-511. As shown in [74, § 4] a practical differentiation
between zero and non-zero values, even with low SNR, is feasible with
a single trace containing the zero value. Hence, in CTIDH, where E0 is
represented by (0 ∶ C), a single occurrence of E0 leaks enough information
for the decision in each step. Thus, the number of required attempts can
be calculated as follows: Given pak

from Lemma 3, the success probability
of having at least one sequence that passes over E0 in the k-th step in tk
attempts is Pexp(X ≥ 1) = 1 − (1 − pak

)tk . We can calculate tk to achieve
an expected success rate Pexp by tk = log(1−pak

)(1 − Pexp). For CTIDH-511,

to achieve Pexp ≥ 99% for all k, we get an estimate of ∑ tk ≈ 130,000
attempts for full key recovery. In simulations, the required number of
attempts for full key recovery was ≈ 85,000 on average over 100 experi-
ments, due to effects mentioned in Section 5.3.3.3. The average execution
time was about 35 minutes (single core) or 5 minutes (120 threads). We
note that finding key bits of the last round(s) via meet-in-the-middle
searches will often be feasible in practice, which reduces the number of
required measurements significantly due to the small values of pak

for large k.

Attacking SQALE-2048. In this case, we simulate a correlation-collision
attack as described in Section 5.3.5: We calculate the correlation between the
64-bit limbs that represent the Fp-values, and apply the standard Hamming-
weight model with noise drawn from a normal distribution. Even with an
SNR as low as 1.40, strongly-correlated representations leak enough infor-
mation to guess the k-th bit, as can be seen in Figure 5.7 for k = 1. Both

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 173

(a) Correlation results without noise. (b) Correlation results with SNR of 1.40.

Figure 5.7: Experimental results to discover bit k = 1: the correct hypothesis
(a ∗EPK) in blue and the wrong hypothesis (a ∗ ẼPK) in orange, for SQALE-
2048.

Figure 5.8: Relation between SNR and success rate. Rate of 0.5 equals
random guess.

without noise and with SNR 1.40, we are able to determine the right bit in
74% of measurements (where 75% is the theoretical optimum, as 2C ≤ p

2
only

half the time). An SNR value of 1.40 is considered low : The SNR value of
a common embedded device, using a measurement script35 provided by the
ChipWhisperer framework for a ChipWhisperer-Lite board with an ARM
Cortex-M4 target, obtains an SNR of 8.90. Figure 5.8 shows the success
rate for different values. We evaluated the following methods for decision-
making:

• Decide based on the number of cases with a higher resulting correlation,
as exemplified in Figure 5.7.

• Decide based on the sum of the resulting correlations for each case, to
reduce the number of attempts required for a given success rate.

35https://github.com/newaetech/chipwhisperer-jupyter/blob/master/archive/

PA_Intro_3-Measuring_SNR_of_Target.ipynb, commit 44112f6

https://github.com/newaetech/chipwhisperer-jupyter/blob/master/archive/PA_Intro_3-Measuring_SNR_of_Target.ipynb
https://github.com/newaetech/chipwhisperer-jupyter/blob/master/archive/PA_Intro_3-Measuring_SNR_of_Target.ipynb

174 Chapter 5: Physical Attacks

Empirical results show that the sum-based approach reduces the required
number of attempts for full key recovery by a factor of 3 on average (from
≈ 24,819 to ≈ 8,273), which leads to an average execution time of ≈ 35
minutes (120 threads).

Attacking SIKE. For SIKE too, we simulate a correlation-collision attack
as described in Section 5.3.5: We calculate the correlation between the 64-bit
limbs that represent the Fp-values, and apply the standard Hamming-weight
model with noise drawn from a normal distribution. The analysis is entirely
similar to that of the SQALE case, with the exceptions that i) we know that
one of the three samples per trit must be an E6-sample, ii) we know that
even with modular reduction, there is strong correlation between the lowest
limbs and iii) we can use both Fp-values α and β for C = α + βi ∈ Fp2 .

As explained in Section 5.3.4, we need on average 5/3 samples per trit to
find ski, for all eB trits. For SIKEp434, this gives an average of 228 samples
to recover skB . The average running time over 100 evaluations in each case
was ≈ 4 seconds for SIKEp434, ≈ 8 seconds for SIKEp503, ≈ 17 seconds for
SIKEp610, and ≈ 42 seconds for SIKEp751 respectively.

Scheme SQALE-2048 CTIDH-511 SIKEp434 SIKEp503 SIKEp610 SIKEp751

Samples 8,273 85,000 228 265 320 398

Table 5.7: Required number of samples to reconstruct secret key in simula-
tions.

5.3.7 Countermeasures and conclusion

We have shown that both Montgomery form and alternative Montgomery
form leak secret information when passing over E0. As described in Sec-
tion 5.3.5, zero-value representations are easiest to detect, and accordingly
one should prefer the alternative Montgomery form over the Montgomery
form throughout the whole computation. However, more effective counter-
measures are required to avoid strongly-correlated representations.

Avoiding E0. A straightforward way of mitigating the attacks is to avoid
paths that lead over E0. Intuitively, randomizing the order of isogenies, and
as proposed in [124] the order of real and dummy isogenies, might seem
beneficial to achieve this. However, we can then simply always attack the
first step of the isogeny path, with a success probability of 1/n. With enough
repetitions, we can therefore statistically guess the secret key, where the
exact success probabilities highly depend on the respective CSIDH variant.
Thus, this countermeasure merely leads to a moderately higher number of
required measurements, but still allows for full key recovery, e.g. in SQALE.

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 175

Furthermore, randomizing the order in which isogenies are evaluated has
a significant impact on the performance, since all state-of-the-art constant-
time implementations of CSIDH use specific strategies for efficiency that fix
this order accordingly.

Similarly, it may appear intuitive to define a certain danger zone around
E0, e.g., containing all curves l±1i ∗E0 for 1 ≤ i ≤ n, and abort the execution
of the protocol whenever an isogeny path enters this zone. However, the
attacker can simply construct public keys that would or would not pass
through this zone, and observe that the protocol aborts or proceeds. This
leaks the same information as in the attack targeting only E0.36

One can fully bypass this danger zone by masking by a (small) isogeny z
before applying any secret a. By commutativity, a ∗E = z−1 ∗ (a ∗ (z ∗E)),
so this route avoids the danger zone when z is sufficiently large. Drawing
z from a masking key space of k bits would require the attacker to guess
the random ephemeral mask correctly in order to get a successful walk
over E0, which happens with probability 2−k. Thus, a k-bit mask increases
the number of samples needed by 2k. Similar countermeasures have been
proposed in [120, 2]. Although masking comes at a significant cost if z needs
to be large, this appears to be the only known effective countermeasure that
fully avoids our attacks.

Avoiding correlations in alternative Montgomery form. As noted,
(2C ∶ 4C) leaks secret information whenever 2C < p

2
. In order to avoid this,

we can try to represent the alternative Montgomery form (A + 2C ∶ 4C)
differently and use a flipped alternative Montgomery form (A + 2C ∶ −4C)
instead, which we write as alternative Montgomery form for brevity. In the
case of E0, this means that the coefficients 2C and −4C are not simple shifts
of each other for 2C < p

2
, which prevents the correlation attack. In order to

still achieve constant-time behavior, we should flip 4C for all curves, since
otherwise E0 would easily be detectable via side channels. The correctness of
computations can be guaranteed by corresponding sign flips in computations
that would normally include 4C.

Although the alternative Montgomery form is effective in preventing leak-
age of E0, it creates other vulnerable curves. We discuss this in more detail
in Section 5.3.8. It remains an open question to find a representation without
both zero-value representations and strongly-correlated representations.

36Pun afficionados may wish to dub this scenario the highway to the danger zone.

176 Chapter 5: Physical Attacks

5.3.8 Flipping 4C as a countermeasure.

In this appendix, we discuss the effectiveness of alternative Montgomery
form as a countermeasure. As Figure 5.9 shows, the countermeasure pre-
vents detection of (2C ∶ 4C), and therefore prevents leakage on E0. Similar
techniques can also be applied for other strongly-correlated representations,
such as those for E6.

(a) Correlation results with
countermeasures (without noise).

(b) SNR/Success rate with
countermeasures.

Figure 5.9: Correlation values including the countermeasures leak no infor-
mation.

Nevertheless, alternative Montgomery form creates new problems. In
alternative Montgomery form, the curve E−6, a valid supersingular curve for
most CSIDH-primes, is represented using (−4C ∶ 4C), which is not strongly-
correlated. However, by switching to alternative Montgomery form, we get
the strongly-correlated representation (−4C ∶ −4C). The attack as described
in the paper is then applicable by replacing E0 by E−6.

It seems difficult to discover if a curve Ea will leak information before
computing the next step: doing so would require knowledge on a, and so
requires a representation of a in some form. Hence, we cannot decide to use
either alternative Montgomery form or alternative Montgomery form before
we compute the actual curve.

5.3.9 CSIDH implementations using radical isogenies

In [47] an alternative method to compute the action of a is proposed, using
radical isogenies. The evaluation of a∗E is still an ordered evaluation l(n) ∗
. . . ∗ l(1) ∗ E, due to a change in the evaluation algorithm we get chains
li ∗ . . . ∗ li of specific degrees ℓi ∈ {4,5,7,9,11,13} in the evaluation. These
chains are computed on a different curve form, namely the Tate normal form
for that specific degree ℓi, instead of as steps between Montgomery curves.

5.3 Zero-Value and Correlation Attacks on CSIDH and SIKE 177

. . . E lki ∗E . . .

E(b0, c0) E(b1, c1) . . . E(bk, ck)

l(j) l(j+k)

To Tate normal form To Montgomery

Rad. Rad. Rad.

The Tate normal form for a degree ℓi in general requires two coefficients
b, c ∈ Fp instead of the single Montgomery coefficient a ∈ Fp, and the radical
isogeny computes b′, c′ associated to li ∗Ea.

In an efficient implementation, both b and c would be represented in
projective coordinates. We know of only one such implementation, given
in [55]. We sketch two attack approaches to extend our attack to such an
implementation:

1. Find a Tate normal curve of degree ℓi such that either b or c has a
strongly-correlated representation. The generic adaptive attack then
works exactly the same.

2. Find the length of the chain by feeding a curve EPK such that we map
back to E0 when we map back to Montgomery form at the end of the
chain. This requires feeding several different EPKj representing several
different lengths of chains.

Note that the attack becomes easier when using radical isogenies: these
chains are computationally very distinct from ordinary isogeny evaluations,
and so we only need to discover the length of the chain. Furthermore, radical
isogenies are performed for low degrees (up to 13), which implies that we
do not perform these degrees in the rest of the steps l(j). This increases pak

substantially.

178 Chapter 5: Physical Attacks

6
Applications

6.1 On Actively Secure Fine-grained Access
Structures from Isogeny Assumptions

This chapter is for all practical purposes identical to the paper On Actively
Secure Fine-grained Access Structures from Isogeny Assumptions [45] au-
thored jointly with Philipp Muth, which was published at PQCrypto 2022.

6.1.1 Introduction

The principal motivation for a secret sharing scheme is to split private in-
formation into fragments and securely distribute these shares among a set
of shareholders. Then, any collaborating set with a sufficient number of
participants is able to reconstruct the shared private information, while the
secret remains confidential to any unauthorised, that is not sufficiently large,
subset of shareholders.

Since their introduction in the 1970s by Blakley [31] and Shamir [168], the
field of secret sharing schemes, information theoretic and computational, has
been studied extensively. In previous years, due to applications in blockchain
and other scenarios, the interest in new developments and applications for
secret sharing schemes has increased.

Post-quantum schemes have, however, only received little attention with
respect to secret sharing. Recently, De Feo and Meyer [73] proposed a key
exchange mechanism and a signature scheme making use of isogeny based
public key cryptography for which the secret key is stored in a Shamir shared
way. Their approach enables decapsulation for the key exchange mechanism
and signing for the signature scheme in a round-robin way without recon-
structing the secret key in clear for any sufficiently large set of shareholders.
Yet in applying Shamir’s secret sharing scheme they restrict themselves to
simple threshold access structures. Furthermore, their protocols are only
passively secure, in that while a misbehaving shareholder cannot obtain in-
formation on the secret key shares of other shareholders participating in

179

180 Chapter 6: Applications

a decapsulation or a signing execution via maliciously formed inputs, his
deviation from the protocol cannot be detected.

We aim to tackle both caveats by proposing an actively secure isogeny
based key exchange mechanism, for which the secret key is secret shared by
a trusted dealer. We further transform the key exchange mechanism into
an actively secure signature scheme with shared secret key.

Our Contribution. Our contribution is manifold. First, we transfer the
active security measures outlined in [27] from their setting of full engagement
protocols to a setting of threshold secret sharing. We thereby open the
active security measures to a wider field of application and improve upon
their efficiency significantly. Second, we apply the adapted active security
measures to propose an actively secure key exchange mechanism with secret
shared secret key. Third, we present an actively secure signature scheme by
applying a Fiat-Shamir transform to our key exchange mechanism. And
fourth, we expand our key encapsulation mechanism and our signature
scheme to a wider field of secret sharing schemes. For that we characterise
the necessary properties for a secret sharing scheme and give several
examples of compatible schemes.

Related work. Secret sharing schemes were first introduced by Blakley
[31] and Shamir [168]. In both their approaches, secrets from the secret
space Zp ∶= Z mod p for prime p are shared by distributing interpolation
points of randomly sampled polynomials. Damg̊ard and Thorbek [69]
presented a secret sharing scheme with secret space Z. Thorbek [179] later
improved their scheme. Yet their scheme is only computationally confi-
dential, compared to the information theoretical confidentiality of Shamir
and Blakley’s schemes. Tassa [176] opened Shamir’s scheme to a more
general application by utilising the derivatives of the sharing polynomial to
construct a hierarchical access structure. These basic secret sharing schemes
rely on the dealer providing honestly generated shares to the shareholders.
Verifiable secret sharing schemes eliminate this drawback by providing the
shareholders with the means to verify the correctness of the received shares
with varying overhead. Examples of these are [25, 157, 174]. With minor
efficiency losses, Herranz and Sáez [102] were able to achieve verifiable
secret sharing for generalised access structures. Traverso, Demirel, and
Buchmann [181] proposed an approach for evaluating arithmetic circuits
on secret shared in Tassa’s scheme, that also enabled auditing the results.
Cozzo and Smart [67] investigated the possibility of constructing shared
secret schemes based on the Round 2 candidate signature schemes in the
NIST standardization process37. Based on CSI-FiSh [28], De Feo and
Meyer [73] introduced threshold variants of passively secure encryption

37https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-

Cryptography-Standardization

https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization

6.1 Fine-grained Access Structures from Isogeny Assumptions 181

and signature schemes in the Hard Homogeneous Spaces (HHS) setting.
Cozzo and Smart [68] presented the first actively secure but not robust
distributed signature scheme based on isogeny assumptions. In [27], the
authors presented CSI-RAShi, a robust and actively secure distributed key
generation protocol based on Shamir’s secret sharing in the setting of HHS,
which necessitates all shareholders to participate.

Outline. In Section 6.1.2 the terminology, primitives and security notions
relevant for this work are introduced. Section 6.1.3 presents an actively
secure threshold key exchange mechanism and proves our scheme’s active
security and simulatability. The actively secure signature scheme resulting
from applying the Fiat-Shamir-transform to our key exchange mechanism
is discussed in Section 6.1.4. Finally, the necessary properties for a secret
sharing scheme to be compatible with our key exchange mechanism and sig-
nature scheme are characterised in Section 6.1.5 in order to enable applying
a more general class of secret sharing schemes.

6.1.2 Preliminaries

Notation. Throughout this work we use a security parameter λ ∈ N. It
is implicitly handed to a protocol whenever needed, that is protocols with
computational security. Information theoretic schemes and protocols such as
secret sharing schemes used in this work do not require a security parameter.

For an indexed set X = {xi}i∈I , we denote the projection onto a subset
I ′ ⊂ I by XI′ = {xi ∈X ∶ i ∈ I ′}. The same holds for indexed tuples (xi)i∈I .

Secret Sharing Schemes. A secret sharing scheme is a cryptographic
primitive that allows a dealer to share a secret among a set of shareholders.
An instance is thus defined by a secret space G, a set of shareholders S and
an access structure ΓS . A set S′ ∈ ΓS is called authorised and can from their
respective shares reconstruct a shared secret. If the instance S is clear from
the context, we omit the index in the access structure Γ. In this work, we
consider monotone access structures, that is for any A ⊂ B ⊂ S with A ∈ Γ,
we also have B ∈ Γ.

A secret sharing instance S provides two algorithms: Share and Rec. A
dealer executes S.Share(s) to generate shares s1, . . . , sk of a secret s. A share
si is assigned to a shareholder Pϕ(i) via a surjective map ϕ ∶ {1, . . . , k} →
{1, . . . , n} induced by ΓS . A set of shareholders S′ ∈ ΓS executes

S.Rec({si}Pϕ(i)∈S′)

on their respective shares to retrieve a previously shared secret.

Definition 24 (Superauthorised sets). For a secret sharing instance S =
(G,S,ΓS), we call a set S′ ⊂ S superauthorised, if for any P ∈ S′, we have

182 Chapter 6: Applications

S′ ∖ {P} ⊆ ΓS . We denote the set of superauthorised sets of shareholders by
Γ+S .

Any superauthorised set is also authorised.

Example 1:[Shamir’s secret sharing] An instance of Shamir’s famous
secret sharing scheme consists of a set of n > 0 shareholders, a secret
space Z mod p, where p is a prime larger than n, and an access structure
Γ = {S′ ⊂ S ∶ #S′ ≥ t} for a threshold t ≤ n. A secret s ∈ Z mod p is shared
by handing each shareholder Pi an interpolation point of a randomly
sampled polynomial of degree t− 1 with constant term s. Reconstruction
is achieved via Lagrange interpolation, that is

s = ∑
Pi∈S′

Li,S′si = ∑
Pi∈S′

∏
Pj∈S′
j≠i

j

j − i
f(i)

for some S′ ∈ Γ and Lagrange interpolation coefficients Li,S′ .

Hard Homogeneous Spaces. We present our key exchange mechanism
and signature scheme in the context of hard homogeneous spaces (HHS). HHS
were first discussed by Couveignes [66] in 2006. He defines a HHS (E ,G) as
a set E and a group (G,⊙) equipped with a transitive action ∗ ∶ G × E → E .
This action has the following properties:

• Compatibility: For any g, g′ ∈ G and any E ∈ E , we have g ∗ (g′ ∗E) =
(g ⊙ g′) ∗E.

• Identity: For any E ∈ E , i ∗ E = E if and only if i ∈ G is the identity
element.

• Transitivity: For any E,E′ ∈ E , there exists exactly one g ∈ G such that
g ∗E = E′.

Definition 25 (Notation). For a HHS (E ,G) with a fixed g ∈ G, let p∣#G be
a fixed prime.We denote [s]E ∶= gs ∗E for all s ∈ Zp and all E ∈ E.

The following problems are assumed to be efficiently computable in a HHS
(E ,G), i.e., there exist polynomial time algorithms to solve them:

• Group operations on G (membership, inverting elements, evaluating
⊙).

• Sampling elements of E and G.

• Testing the membership of E .

6.1 Fine-grained Access Structures from Isogeny Assumptions 183

• Computing the transitive action ∗: given g ∈ G and E ∈ E as input,
compute g ∗E.

Whereas the subsequent problems are assumed to be hard in a HHS (E ,G).

Problem 9 (Group Action Inverse Problem (GAIP)). Given two elements
E,E′ ∈ E as input, the challenge is to provide g ∈ G with E′ = g ∗E. Due to
the transitivity property of HHS a given instance of the GAIP has a solution.

Problem 10 (Parallelisation Problem). An instance of the Parallelisation
Problem is defined by a triple (E,E′, F) ∈ E3 with E′ = g ∗E. The challenge
is to provide F ′ with F ′ = g ∗ F .

The intuitive decisional continuation of this problem is as follows.

Problem 11 (Decisional Parallelisation Problem). An instance of the De-
cisional Parallelisation Problem is defined by a base element E ∈ E and a
triple (Ea,Eb,Ec) with Ea = [a]E, Eb = [b]E and Ec = [c]E. The challenge
is to distinguish whether c = a + b or c←$ Zp was randomly sampled.

Remark 16. It is obvious that the decisional parallelisation problem reduces
to the parallelisation problem, which reduces to the group action inverse prob-
lem.

Threshold Group Action. Let s be a Shamir shared secret among share-
holders P1, . . . , Pn, that is each Pi holds a share si of s, i = 1, . . . , n. To
compute E′ = [s]E for an arbitrary but fixed E ∈ E without reconstructing
s, we have an authorised set of shareholders execute Algorithm 24. If it is
executed successfully, we have by the compatibility property of ∗ and the
repeated application of Ek ← [Li,S′si]E

k−1 the result

E#S′ =
⎡
⎢
⎢
⎢
⎣
∑

Pi∈S′
Li,S′si

⎤
⎥
⎥
⎥
⎦
E = [s]E.

Piecewise Verifiable Proofs. A piecewise verifiable proof (PVP) is a
cryptographic primitive in the context of hard homogeneous spaces and was
first introduced in [27]. It is a compact non-interactive zero-knowledge proof
of knowledge of a witness f ∈ Zq [X] for a statement

x = ((E0,E1) , s1, . . . , sn) , (6.1)

with statement pieces si = f(i) for i = 0, . . . , n, with E1 = [s0]E0 ∈ E . A PVP
provides a proving protocol PVP.P , which takes a statement x of the form
(6.1) and a witness f and outputs a proof (π,{πi}i=0,...,n), where (π,πi) is
a proof piece for si, i = 0, . . . , n. The PVP also provides a verifying protocol
PVP.V , which takes an index i ∈ {0, . . . , n}, a statement piece si and a proof
piece (π,πi) and outputs true or false. Let R = {(x, f)}, where f is a witness
for the statement x. The projection RI for some I ⊂ {0, . . . , n} denotes
(xI , f).

184 Chapter 6: Applications

Definition 26 (Completeness). We call a PVP complete, if, for any (x, f) ∈
R and

(π,{πi}i=0,...,n)← PVP.P (f, x) ,

the verification succeeds, that is

∀j ∈ {0, . . . , n}∶Pr[PVP.V (j, xj , (π,πj)) = true] = 1.

Definition 27 (Soundness). A PVP is called sound if, for any adversary A,
any I ⊂ {0, . . . , n} and any x for which there exists no f with (xI , f) ∈RI ,

Pr[PVP.V (j, xj , (π,πj)) = true]

is negligible in the security parameter λ for all j ∈ I, where
(π,{πi}i∈I)← A(1

λ).

Definition 28 (Zero-knowledge). A PVP is zero-knowledge, if for any I ⊂
{1, . . . , n} and any (x, f) ∈R, there exists a simulator Sim such that for any
polynomial-time distinguisher A the advantage

∣Pr[ASim(xI)(1λ) = 1] −Pr[AP (x,f)(1λ) = 1]∣

is negligible in the security parameter λ, where P is an oracle that upon input

(x, f) returns (π,{πj}j∈I) with (π,{πj}j=0,...,n)← PVP.P (f, x).

We refer to [27] for the precise proving and verifying protocols and
the security thereof. In combination they state a complete, sound and
zero-knowledge non-interactive PVP. A prover can hence show knowledge
of a sharing polynomial f to a secret s0 = f(0) with shares si = f(i). In
Section 6.1.3, we adjust [27]’s proving protocol to our setting of threshold
schemes, so that knowledge of a subset of interpolation points is proven
instead of all interpolation points.

Zero-Knowledge Proofs for the GAIP. We give a non-interactive zero-
knowledge proof protocol for an element s ∈ Zp with respect to the group
action inverse problem. That is, a prover shows the knowledge of s so that
E′

i = [s]Ei, for Ei,E
′
i ∈ E and i = 1, . . . ,m, simultaneously, without revealing

s.
The prover samples bj ∈ Zp and computes Êi,j ← [bj]Ei for i = 1, . . . ,m

and j = 1, . . . , λ. He then derives challenge bits

(c1, . . . , cλ)←H(E1,E
′
1, . . . ,Em,E′

m, Ê1,1 . . . , Êm,λ)

via a hash function H ∶ E(2+λ)m → {0,1}
λ

and prepares the answers rj ←
bj − cjs, j = 1, . . . , λ. The proof π = (c1, . . . , cλ, r1, . . . , rλ) is then published.

The verification protocol is straight forward: given a statement
(Ei,E

′
i)i=1,...,m and a proof π = (c1, . . . , cλ, r1, . . . , rλ), the verifier com-

putes Ẽi,j ← [rj]Ei if cj = 0 and Ẽi,j ← [rj]E
′
i otherwise, for i =

6.1 Fine-grained Access Structures from Isogeny Assumptions 185

1, . . . ,m and j = 1, . . . , λ. He then generates verification bits (c̃1, . . . c̃λ) ←
H(E1,E

′
1, . . . ,Em,E′

m, Ẽ1,1 . . . , Ẽm,λ) and accepts the proof if (c1, . . . , cλ) =
(c̃1, . . . , c̃λ).

We sketch the proving and verifying protocols in Algorithm 25 and
Algorithm 26, respectively. Again, we refer to [28] for the proof of complete-
ness, soundness and zero-knowledge with respect to the security parameter λ.

The Adversary. We consider a static and active adversary. At the begin-
ning of a protocol execution, the adversary corrupts a set of shareholders.
The adversary is able to see their inputs and control their outputs. The set
of corrupted shareholders cannot be changed throughout the execution of
the protocol.

The adversary’s aim is two-fold. On the one hand it wants to obtain
information on the uncorrupted parties’ inputs, on the other hand it wants
to falsify the output of the execution of our protocol without being detected.

Communication Channels. Both our schemes assume the existence of
a trusted dealer in the secret sharing instance. The shareholders’ commu-
nication occurs in the execution of the decapsulation protocol of our key
exchange mechanism and the signing protocol of our signature scheme.

The communication from the dealer to a shareholder must not be eaves-
dropped upon or tampered with, we hence assume secure private channels
between the dealer and each shareholder. However, the communication be-
tween shareholders need not be kept private, thus we assume a simple broad-
cast channel between the shareholders. The means of how to establish secure
private channels and immutable broadcast channels are out of scope of this
work.

6.1.3 Key Exchange Mechanism

A key exchange mechanism is a cryptographic public key scheme that
provides three protocols: KeyGen, Encaps and Decaps. These enable a party
to establish an ephemeral key between the holder of the secret key. We
present our actively secure key exchange mechanism with private key that
is secret shared among a set of shareholders. An authorised subset can
execute the Decaps protocol with reconstructing the secret key.

Public Parameters. We fix the following publically known parameters.

• A secret sharing instance S with shareholders S = {P1, . . . , Pn}, secret
space Zp and access structure Γ.

• A hard homogeneous space (E ,G) with fixed starting point E0 ∈ E .

• A fixed element g ∈ G with ordg = p for the mapping [⋅]⋅ ∶ Zp × E →
E ; s↦ gsE.

186 Chapter 6: Applications

We give our key exchange mechanism in the context of Shamir’s secret shar-
ing scheme and elaborate possible extensions to other, more general secret
sharing schemes in Section 6.1.5.
Key Generation. A public and secret key pair is established by a trusted
dealer (even an untrusted dealer is feasible by employing verifiable secret
sharing schemes) executing Algorithm 20. For that he samples a secret key
s and publishes the public key pk ← [s]E0. The secret key s is then shared
among the {P1, . . . , Pn} via S.Share(s). The dealer shares each share si,
i = 1, . . . , n, once more. Each shareholder Pi, i = 1, . . . , n, eventually receives
si, {sji, sij}j=1,...,n, that is his share si of s, the sharing of si and a share of
other sj , j ≠ i.

Algorithm 20: Key generation

Input: S
1 s←$ Zp

2 pk← [s]E0

3 {s1, . . . , sn}← S.Share(s)
4 for i = 1, . . . , n do
5 {si1, . . . , sin}← S.Share(si)

6 publish pk
7 for i = 1, . . . , n do

8 send {si,{sij}j=1,...,n,{ski}k=1,...,n} to Pi

This key generation protocol can be regarded as a ”two-level sharing”,
where each share of the secret key is itself shared again among the share-
holders.

Encapsulation. With a public key pk ∈ E as input, the encapsulation
protocol returns an ephemeral key K ∈ E and a ciphertext c ∈ E . Our
encapsulation protocol is identical to the protocol of [73], thus we just give
a short sketch and refer to De Feo’s and Meyer’s work for the respective
proofs of security.

Decapsulation. A decapsulation protocol takes a ciphertext c and outputs
a key K. De Feo and Meyer [73] applied the threshold group action
(Algorithm 24) so that an authorised set S′ ∈ Γ decapsulates a ciphertext
c and produces an ephemeral key [s] c = [s] (b ∗E0) = b ∗ ([s]E0). For
that, the shareholders agree on an arbitrary order of turns. With E0 ∶= c,
for k = 1, . . . ,#S′, the kth shareholder Pi outputs Ek = [Li,S′si]E

k−1.

The last shareholder outputs the decapsulated ciphertext E#S′ = [s] c.
Their approach is simulatable. It does not leak any information on the

6.1 Fine-grained Access Structures from Isogeny Assumptions 187

Algorithm 21: Encapsulation

Input: pk
1 b←$ G
2 K ← b ∗ pk
3 c← b ∗E0

4 return (K, c)

shares si, yet it is only passively secure. Thus, a malicious shareholder can
provide malformed input to the protocol and falsify the output without
being detected. We extend their approach to enable detecting misbehaving
shareholders in a decapsulation. For that we maintain the threshold group
action and apply the PVP and zero-knowledge proof layed out in Section
6.1.2.

Amending the PVP. In the PVP protocol sketched in Section 6.1.2, a
prover produces a proof of knowledge for a witness polynomial f of the
statement ((E0,E1) , s1, . . . , sn) , where E0 ←$ E , E1 = [s0]E0 and si = f(i)
for i = 0, . . . , n. He thereby proves knowledge of the sharing polynomial f of
s0 = f(0).

This approach does not agree with the threshold group action, for which
a shareholder Pi’s output in the round-robin approach is Ek ← [Li,S′si]E

k−1

rather than Ek ← [si]E
k−1, where Ek−1 denotes the previous shareholder’s

output. Futhermore, authorised sets need not contain all shareholders. Ex-
ample 11 illustrates a further conflict with of the PVP with the threshold
group action.

Example 11. Let sk be a secret key generated and shared by KeyGen. That
is each shareholder Pi holds

{si,{sij}Pj∈S ,{sji}Pj∈S}.

Also let S′ ∈ Γ be a minimally authorised set executing Algorithm 24, i.e.,
for any Pi ∈ S

′, S′ ∖ {Pi} is unauthorised. Thus, for any arbitrary but fixed
s′i ∈ Zp, there exists a polynomial f ′i ∈ Zp [X]k−1 so that f ′i(j) = Li,S′sij and

R′ = [f ′i(0)]R for any R,R′ ∈ E. Therefore, Pi can publish (π,{πj}Pj∈S′)

with

(π,{πj}Pj∈S)←PVP.P(((R,R′) , (Li,S′sij)Pj∈S) , f
′
i)

which to S′ ∖ {Pi} is indistinguishable from

PVP.P(((E0,E1) , (Li,S′sij)Pj∈S) , Li,S′fi)

188 Chapter 6: Applications

with E0 ←$ E and E1 = [Li,S′si]E0. Thus, for a minimally authorised set
S′, the soundness of the PVP does not hold with respect to Pi ∈ S

′ and fi.

We resolve the conflicts by amending [27]’s PVP protocol, so that, for a
superauthorised set S∗, a shareholder Pi ∈ S

∗ proves knowledge of a witness
polynomial Li,S∗fi for a statement

((R,R′) , (sij)Pj∈S∗),

where R ←$ E , R′ = [Li,S∗si]R, sij = fi(j) for Pj ∈ S∗ and si = fi(0).
The inputs of our amended proving protocol are the proving shareholder’s
index i, the witness polynomial f , the superauthorised set S∗ ∈ Γ+ and the

statement ((R,R′) , (sij)Pj∈S∗). The protocol can be found in Algorithm 27,

in which C denotes a commitment scheme. The verifying protocol in turn has
the prover’s and the verifier’s indices i and j, respectively, a set S∗ ∈ Γ+, a
statement piece xj and a proof piece (π,πj) as input, where xj = (R,R′) ∈ E2

if j = 0 and xj ∈ Zp otherwise. The verifying protocol is given in Algorithm
28.

The definitions of soundness and zero-knowledge for a threshold PVP
scheme carry over from the non-threshold setting in Section 6.1.2 intuitively,
yet we restate the completeness definition for the threshold setting.

Definition 12 (Completeness in the threshold setting). We call a threshold
PVP scheme complete if, for any S′ ∈ Γ, any (x, f) ∈ R, any Pi ∈ S

′ and

(π,{πj}Pj∈S′)← PVP.P (i, f, S′, xS′), we have

Pr[PVP.V (i, j, S′, xj , (π,πj)) = true] = 1 for all Pj ∈ S
′.

The proofs for soundness, correctness and zero-knowledge for the ap-
proach of [27] are easily transferred to our amended protocols, thus we do
not restate them here.

We arrive at our decapsulation protocol, executed by a superauthorised
set S∗: The partaking shareholders fix a turn order. A shareholder Pi’s turn
consists of the following steps.

1. If the previous shareholder’s output Ek−1 is not in E , Pi outputs �
and aborts. The first shareholder’s input E0 is the protocol’s input
ciphertext c.

2. Otherwise Pi samples Rk ←$ E and computes R′
k ← [Li,S∗si]Rk.

3. Pi computes and publishes

(πk,{πk
j }Pj∈S∗

)← PVP.P(i, fi, S
∗, ((Rk,R

′
k) , (sij)Pj∈S∗)).

4. Pi computes Ek ← [Li,S∗si]E
k−1 and the zero-knowledge proof zk ←

ZK.P((Rk,R
′
k) , (E

k−1,Ek) , Li,S∗si). He publishes both.

6.1 Fine-grained Access Structures from Isogeny Assumptions 189

5. Each shareholder Pj ∈ S
∗ ∖ {Pi} verifies

PVP.V (i, j, S∗, sij , (π
k, πk

j)) ∧ PVP.V (i,0, S∗, (Rk,R
′
k) , (π

k, πk
0))
(6.2)

and
ZK.V ((Rk,R

′
k) , (E

k−1,Ek) , zk). (6.3)

If (6.2) fails, Pj issues a complaint against Pi. If Pi is convicted of
cheating by more than #S∗/2 shareholders, decapsulation is restarted
with an S∗′ ∈ Γ+, so that Pi /∈ S

∗′. If (6.3) fails, the decapsulation is
restarted outright with S∗′ ∈ Γ+, so that Pi /∈ S

∗′.

6. Otherwise, Pi outputs Ek and finalises its turn.

7. The protocol terminates with the last shareholder’s E#S∗ as output.

The combination of the PVP and the zero-knowledge proof in steps 3 and
4 ensure that Pi has knowledge of the sharing polynomial Li,S∗fi and also
inputs Li,S∗fi(0) to compute Ek. We give the precise protocol in Algorithm
22.

Definition 13. A key exchange mechanism with secret shared private key
is correct, if for any authorised set S′, any public key pk and any (K, c) ←
Encaps(pk), we have K = K′ ← Decaps(c, S′).

The correctness of our key exchange mechanism presented in Algorithm
20, Algorithm 21 and Algorithm 22 follows from the correctness of the thresh-
old group action (Algorithm 24). Let sk be a secret key and pk = [sk]E0 be
the respective public key, that have been generated by KeyGen, thus each
shareholder Pi holds a share si of sk, i = 1, . . . , n. For an authorised set S′

we therefore have
sk = ∑

Pi∈S′
Li,S′si.

Furthermore, let (K, c) ← Encaps(pk). To show correctness, K′ = K has to
hold, where K′ ← Decaps(c, S′). Now, after executing Decaps(c, S′), we have

K′ = E#S′ emerging as the result of the threshold group action applied to c.
This gives us

K′ =
⎡
⎢
⎢
⎢
⎣
∑

Pi∈S′
Li,S′si

⎤
⎥
⎥
⎥
⎦
c = [sk] (b ∗E0) = b ∗ pk = K.

The decapsulation is executed by superauthorised sets S∗ ∈ Γ+ ⊂ Γ. This
shows that our key exchange mechanism is correct.

190 Chapter 6: Applications

Algorithm 22: Decapsulation

Input: c, S∗

1 E0 ← c
2 k ← 0
3 for Pi ∈ S

∗ do
4 if Ek /∈ E then
5 Pi outputs � and aborts.

6 k ← k + 1
7 Rk ←$ E
8 R′

k ← [Li,S∗si]Rk

9 (πk,{πk
j }Pj∈S∗

)← PVP.P (i, fi, S
∗, ((Rk,R

′
k), (sij)Pj∈S∗))

10 Pi publishes (Rk,R
′
k) and (πk,{πk

j }Pj∈S∗
)

11 Ek ← [Li,S∗si]E
k−1

12 zkk ← ZK.P((Rk,R
′
k) , (E

k−1,Ek) , Li,S∗si)

13 Pi publishes (Ek, zkk)

14 for Pj ∈ S
∗ ∖ {Pi} do

15 if PVP.V (i, j, S∗, sij , (π
k, πk

j)) = false∨

PVP.V (i,0, S∗, (Rk,R
′
k) , (π

k, πk
0)) = false then

16 Pj publishes sij
17 if Pi is convicted then

18 return Decapsulation(c, S∗′) with S∗′ ∈ Γ ∧ Pi /∈ S
∗′

19 if ZK.V ((Rk,R
′
k) , (E

k−1,Ek) , zk) = false then

20 return Decapsulation(c, S∗′) with S∗′ ∈ Γ ∧ Pi /∈ S
∗′

21 return K ← Ek

Security. There are two aspects of security to consider:
• Active security: A malicious shareholder cannot generate his contri-

bution to the decapsulation protocol dishonestly without being de-
tected. We prove this by showing that an adversary that can provide
malformed inputs without detection can break the PVP or the zero-
knowledge proof of knowledge.

• Simulatability: An adversary that corrupts an unauthorised set of
shareholders cannot learn any information about the uncorrupted
shareholders’ inputs from an execution of the decapsulation protocol.
We show this by proving the simulatability of Decaps.

6.1 Fine-grained Access Structures from Isogeny Assumptions 191

Active security.

Theorem 14. Let S∗ ∈ Γ+ and let (pk, sk) ← KeyGen be a public/secret key
pair, where sk has been shared. Also let (K, c) ← Encaps(pk). Denote the
transcript of Decaps(c, S∗) by

(Ek, (Rk,R
′
k) , (π

k,{πk
j }Pj∈S∗

) , zkk)
k=1,...,#S∗

.

Let Pi ∈ S
∗ be an arbitrary but fixed shareholder. If Decaps(c, S∗) terminated

successfully and Pi′ ’s output was generated dishonestly, then there exists an
algorithm that breaks the soundness property of PVP or ZK.

Proof. Let Pi′ be the malicious shareholder and let k′ be the index of Pi′ ’s
output in the transcript. Since Decaps(c, S∗) terminated successfully, we
have

PVP.V (i′, j, S∗, Li′,S∗si′j , (π
k′ , πk′

j)) =true (6.4)

PVP.V (i′,0, S∗, (Rk′ ,R
′
k′) , (π

k′ , πk′
0)) =true (6.5)

ZK.V ((Ek′−1,Ek′) , (Rk′ ,R
′
k′) , zk

k′) =true (6.6)

for all Pj ∈ S
∗ ∖ {Pi′}. Ek′ was generated dishonestly, thus we have

Ek′ = [α]Ek′−1, for some α ≠ Li′,S∗si′ .

We distinguish two cases: R′
k′ ≠ [α]Rk′ and R′

k′ = [α]Rk′ .

In the first case, Pi′ published a zero-knowledge proof zkk
′

so that (6.6)

holds, where Ek′ = [α]Ek′−1 yet R′
k′ ≠ [α]Rk′ . Pi′ thus broke the soundness

property of the zero-knowledge proof.

In the second case, Pi′ published (πk′ ,{πk′
j }

Pj∈S∗
) so that (6.4) and (6.5)

hold for all Pj ∈ S
∗ ∖ {Pi′} and for j = 0. Thus, Pi′ proved knowledge of a

witness polynomial f ′ with

f ′(j) = Li′,S∗sij (6.7)

for all Pj ∈ S
∗ ∖ {Pi′} and R′

k′ = [f
′(0)]Rk′ , that is f ′(0) = α. Since f ′ has

degree at most k−1, it is well-defined from (6.7). Thus, we have f ′ ≡ Li′,S∗fi′ ,
where fi′ is the polynomial with which si was shared, i.e., fi′(0) = si. This
gives us α = f ′(0) = Li′,S∗fi′(0) = Li′,S∗si′j . We arrive at a contradiction,
assuming the soundness of the PVP.

Simulatability. We show, that an adversary who corrupts an unauthorised
subset of shareholder does not learn any additional information from an
execution of the decapsulation protocol.

192 Chapter 6: Applications

Definition 15 (Simulatability). We call a key exchange mechanism simu-
latable, if for any HHS (E ,G) with security parameter λ and any compatible
secret sharing instance S, there exists a polynomial-time algorithm Sim so
that, for any polynomial-time adversary A the advantage

Advdist−transcriptA,Sim ((E ,G) ,S) ∶= ∣Pr[Expdist-transcriptA,Sim (S)]∣

in the security game Expdist-transcriptA,Sim (S) (Algorithm 29) is negligible in λ.

Theorem 16. If the PVP protocol and the GAIP ZK protocol employed are
zero-knowledge, then the decapsulation protocol (Algorithm 22) is simulat-
able.

Proof. We give a finite series of simulators, the first of which simulates the
behaviour of the uncorrupted parties faithfully and the last of which fulfills
the secrecy requirements. This series is inspired by the simulators, that [27]
gave for the secrecy proof of their key generation algorithm, yet differs in
some significant aspects. The outputs of the respective simulators will be
proven indistinguishable, hence resulting in the indistinguishability of the
first and last one. As a slight misuse of the notation, we denote the set
of corrupted shareholders by A, where A is the adversary corrupting an
unauthorised set of shareholders. This means Pi is corrupted iff Pi ∈ A.

The input for each simulator is a ciphertext c, a derived key K and the
adversary’s knowledge after KeyGen was successfully executed, that is

{si,{sij}Pi∈S∗ ,{sji}Pj∈S∗∖A}Pi∈A
.

1. The adversary corrupted an unauthorised set A, hence each share of
the secret key is uniformly distributed from his view. Sim1 samples
a polynomial f ′i ∈ Zp [X]k−1 with ∀Pj ∈ A ∶ f ′i(i) = sij uniformly at
random for each Pi ∈ S

∗ ∖A. Since A is unauthorised, f ′i exists.

Sim1 then proceeds by honestly producing the output of each Pi ∈
S∗∖A according to the decapsulation protocol, i.e., it samples Rk ←$ E ,
computes R′

k ← [Li,S∗f
′
i(0)]Rk and outputs

PVP.P(i, f ′i , S
∗, ((Rk,R

′
k) , (Li,S∗sij)Pj∈S∗)),

Ek ← [Li,S∗s
′
i]E

k−1 and ZK.P((Rk,R
′
k) , (E

k−1,Ek) , Li,S∗f
′
i(0)),

where k is the index of Pi’s output in the transcript, sij ∶= f ′i(j) for
Pj ∈ S

∗ ∖A and s′i ∶= f
′
i(0). Since, for all Pi ∈ S

∗ ∖A, si is informa-
tion theoretically hidden to the adversary, the resulting transcript is
identically distributed to a real transcript.

2. Let i′ denote the index of the last honest party in the execution of the
decapsulation protocol and k′ the index of its output. Sim2 behaves

6.1 Fine-grained Access Structures from Isogeny Assumptions 193

exactly as Sim1 with the exception, that it does not compute the PVP
itself but calls the simulator SimPVP for the PVP to generate the proof

(πk′ ,{πk′
j }) for the statement ((Rk′ ,R

′
k′) , (Li,S∗si′j)Pj∈S∗). Since the

PVP is zero-knowledge, Sim2’s output is indistinguishable from that
of Sim1.

3. Sim3 behaves identical to Sim2 apart from not generating the zero-
knowledge proof for Pi′ itself, but outsourcing it to the simulator for
the zero-knowledge proof. That is Sim3 hands tuples (Rk′ ,R

′
k′) and

(Ek′−1,Ek′) to SimZK and publishes its answer as the zero-knowledge

proof. With ZK being zero-knowledge, the output of Sim3 is indistin-
guishable from that of Sim2.

4. The final simulator, Sim4, enforces the correct decapsulation output,
that is E#S∗ = K. Since, for Pj ∈ A, sj was provided as input and Pi′

is the last honest shareholder in the order of decapsulation execution,
Sim4 computes

∑
Pj∈S′

Lj,S∗sj ,

where S′ contains the shareholders, whose turn is after Pi′ ’s. To achieve
the correct output of the decapsulation E, Sim4 thus sets

Ek′ ←

⎡
⎢
⎢
⎢
⎢
⎣

− ∑
Pj∈S′

Lj,S∗sj

⎤
⎥
⎥
⎥
⎥
⎦

E

instead of Ek′ ← [Li′,S∗s
′
i′]E

k′−1. Assuming the soundness of the PVP
as well as of the zero-knowledge proof, this guarantees the result to be
E#S∗ = E, since

E#S∗ =

⎡
⎢
⎢
⎢
⎢
⎣
∑

Pj∈S′
Lj,S∗sj

⎤
⎥
⎥
⎥
⎥
⎦

Ek′ = E

holds. It remains to show, that the output of Sim4 cannot be distin-
guished from that of Sim3. The following reasoning is similar to that
of [27], yet for completeness we give a reduction B′, that uses a distin-
guisher A′, that distinguishes Sim3 from Sim4, to break the decisional
parallelisation problem. We highlight the necessary modifications.

Let (Ea,Eb,Ec) be an instance of the decisional parallelisation problem
with base element c. B′ computes

Ek′ ←

⎡
⎢
⎢
⎢
⎢
⎣

∑
Pj∈S∗∖(S′∪{Pi′})

Lj,S∗sj

⎤
⎥
⎥
⎥
⎥
⎦

Ea.

194 Chapter 6: Applications

With si′ looking uniformly distributed from A’s view, this choice of Ek′

is indistinguishable from Ek′ = [Li′,S∗s
′
i′]E

k′−1. B′ furthermore does
not sample Rk′ ←$ E but puts Rk′ ← Eb and R′

k′ ← Ec. The resulting
transcript is handed to A′ and B′ outputs whatever A′ outputs.

Comparing the distributions, we see that

Ek′ = [a]Ek′−1 = [a]
⎛

⎝

⎡
⎢
⎢
⎢
⎢
⎣

∑
Pj∈S∗∖(S′∪{Pi′})

Lj,S∗sj

⎤
⎥
⎥
⎥
⎥
⎦

c
⎞

⎠

if and only if Ea = [a]c, where sj ∶= s′j for Pj /∈ A. Furthermore,
R′

k′ = [a]Rk′ is equivalent to Ec = [a]Eb. In the case of Ea = [a]c and
Ec = [a]Eb, the transcript handed to A′ is identically distributed to
Sim3’s output. If, on the other hand, (Ea,Eb,Ec) is a random triple,
then the transcript follows the same distribution as Sim4’s output. B′

thus breaks the DPP with the same advantage as A′ distinguishes Sim3

from Sim4.

Sim4 outputs a transcript of the decapsulation protocol with input c and
output K that cannot be distinguished from the output of Sim1, which is
indistinguishable from a real execution protocol.

Efficiency. Each shareholder engaged in an execution of the decapsulation
protocol has one round of messages to send. The messages of the k-th

shareholder consist of the tuple (Rk,R
′
k), a PVP proof (πk,{πk

j }Pj∈S∗
),

the output Ek and the zero-knowledge proof zk. Thus, the total size of a
shareholder’s messages is

2x + 2c + λk log p + 2λ(#S∗) + x + λk log p + λ

=3x + 2c + λ (1 + 2(#S∗) + 2k log p)

where x is the size of the bit representation of an element of E and c is the
size of a commitment produced in PVP.P . Assuming x, c and the secret
sharing parameters k and p to be constant, the message size is thus linear
in the security parameter λ with moderate cofactor.

6.1.4 Actively Secure Secret Shared Signature Proto-
cols

We convert the key exchange mechanism in Algorithm 20, Algorithm 21 and
Algorithm 22 into an actively secure signature scheme with secret shared
signing key. We concede that applying active security measures to a signa-
ture scheme to ensure the correctness of the resulting signature is counter-
intuitive, since the correctness of a signature can easily be checked through
the verifying protocol. Yet verification returning false only shows that the

6.1 Fine-grained Access Structures from Isogeny Assumptions 195

signature is incorrect, a misbehaving shareholder cannot be identified this
way. An actively secure signature scheme achieves just that. An identified
cheating shareholder can hence be excluded from future runs of the signing
protocol.

A signature scheme consists of three protocols: key generation, signing
and verifying. We transfer the unmodified key generation protocol from
the key exchange mechnism in Section 6.1.3 to our signature scheme. The
signing protocol is derived from the decapsulation protocol (Algorithm 22)
by applying the Fiat-Shamir-transformation, the verifying protocol follows
straightforward. The protocols are given in Algorithm 23 and Algorithm 30.

Similar to [28], the results from [78] on Fiat-Shamir in the QROM can
be applied to our setting as follows. First, in the case without hashing, since
the sigma protocol has special soundness [28] and in our case perfect unique
reponses, [78] shows that the protocol is a quantum proof of knowledge.
Further, in the case with hashing, the collapsingness property implies that
the protocol has unique responses in a quantum scenario.

Instantiations. As a practical instantiation, we propose the available pa-
rameter set for CSIDH-512 HHS from [28]. Currently no other instantiation
of the presented schemes seems feasible in a practical sense. Furthermore,
according to recent works [158, 35] CSIDH-512 may not reach the initially
estimated security level.

6.1.5 Generalising the Secret Sharing Schemes

We constructed the protocols above in the context of Shamir’s secret sharing
protocol [168]. The key exchange mechanism in Section 6.1.3 as well as the
signature scheme in Section 6.1.4 can be extended to more general secret
sharing schemes. In the following, we characterise the requirements that a
secret sharing scheme has to meet in order to successfully implement the
key exchange mechanism and the signature scheme.

Compatibility Requirements.

Definition 29 (Independent Reconstruction). We say a secret sharing in-
stance S = (S,Γ,G) is independently reconstructible, if, for any shared se-
cret s ∈ G, any S′ ∈ Γ and any shareholder Pi ∈ S

′, Pi’s input to recon-
structing s is independent of the share of each other engaged shareholder
Pj ∈ S

′.

A secret sharing scheme compatible with our key exchange mechanism
and signature scheme has to be independently reconstructible, since each
shareholder’s input into the threshold group action is hidden from every
other party by virtue of the GAIP.

196 Chapter 6: Applications

Algorithm 23: Secret Shared Signing Algorithm

Input: m,S∗

1 (E0
1 , . . . ,E

0
λ)← (E0, . . . ,E0)

2 k ← 0
3 for Pi ∈ S

∗ do
4 k ← k + 1
5 for l ∈ 1, . . . , λ do
6 Pi samples bil ←$ Zq [X]≤k−1
7 Pi publishes Rk

il ←$ E

8 Pi publishes R′
il
k
← [bil(0)]R

k
il

9 Pi publishes (π,{πj}Pj∈S∗)←

PVP.P(i, bil, S
∗, ((Rk

il,R
′
il
k
) , (bil(l))Pj∈S∗))

10 Pi outputs Ek
l ← [bil(0)]E

k−1
l

11 Pi publishes zk ← ZK.P ((Rk
il,R

′
il
k
) , (Ek−1

l ,Ek
l) , bil(0))

12 if ZK.V ((Rk
il,R

′
il
k
) , (Ek−1

l ,Ek
l) , zk) = false then

13 restart without Pi

14 (c1, . . . , cλ)←H(E
#S∗
1 , . . . ,E#S∗

λ ,m)

15 for Pi ∈ S
∗ do

16 for l ∈ 1, . . . , λ do
17 Pi outputs zil = bil − cl ⋅Li,S∗ ⋅ si
18 for Pj ∈ S

∗ do
19 Pj computes b′il(j)← zil(j) + clLi,S∗sij
20 and verifies
21 PVP.V (i, j, S∗, b′il(j), π, πj) ∧

PVP.V (i,0, S∗, (Rk
il,R

′
il
k
) , π, π0)

22 if Pi is convicted of cheating then
23 restart without Pi

24 for l ∈ 1, . . . , λ do
25 zj ← ∑Pi∈S∗ zij

26 return ((c1, . . . , cλ) , (z1, . . . , zλ))

6.1 Fine-grained Access Structures from Isogeny Assumptions 197

Definition 30 (Self-contained reconstruction). An instance S = (S,Γ,G)
of a secret sharing scheme is called self-contained, if, for any authorised set
S′, the input of any shareholder Pi ∈ S

′ in an execution of Rec is an element
of G.

It is necessary, that G = Zp for some prime p holds to enable the mapping
⋅↦ [⋅]. This requirement may be loosened by replacing ⋅↦ [⋅] appropriately.
To enable two-level sharing, it has to hold that for a share si ∈ S.Share(s)
of a secret s, si ∈ G holds. The secret sharing scheme also has to allow for
a PVP scheme, that is compatible with a zero-knowledge proof for the GAIP.

Examples of Secret Sharing Schemes.

• It is evident, that Shamir’s approach fulfills all aforementioned require-
ments. In fact, the two-level sharing and the PVP have been tailored
to Shamir’s polynomial based secret sharing approach.

• Tassa [176] extended Shamir’s approach of threshold secret sharing to
a hierarchical access structure. To share a secret s ∈ Zp with prime
p, a polynomial f with constant term s is sampled. Shareholders of
the top level of the hierarchy are assigned interpolation points of f as
in Shamir’s scheme. The k-th level of the hierarchy receives interpo-
lation points of the k − 1st derivative of f . The shares of in Tassa’s
scheme are elements of Zp themselves. The key generation (Algorithm
20) must be adapted so that a shareholder receives a description of
the polynomial utilised in sharing his share, instead of receiving the
shares with which his share of the secret key was shared. Hence all
derivatives utilised can easily be computed. Reconstructing a shared
secret is achieved via Birkhoff interpolation, the execution of which is
independent and self-contained. The zero-knowledge proof (Algorithm
25 and Algorithm 26) as well as the piecewise verifiable proof (Algo-
rithm 27 and Algorithm 28) thus directly transfer to Tassa’s approach
utilising the appropriate derivatives in the verifying protocols. The
decapsulation and the signing protocols hence can be executed with
adjustments only to the verifying steps.

• In 2006, Damgard and Thorbek proposed a linear integer secret sharing
scheme [69] with secret space Z. Given an access structure Γ, a matrix
M is generated in which each shareholder is assigned a column so that
iff S′ ∈ Γ, the submatrix MS′ has full rank. A secret s is shared by mul-
tiplying a random vector v with first entry s with M and sending the
resulting vector entries to the respective shareholders. Reconstruction
follows intuitively. Their scheme hence further generalises Tassa’s with
respect to secret space and feasible access structures. With the secret
space Z their approach is not compatible with the mapping ⋅ ↦ [⋅]
and our PVP scheme. Thus, neither our key exchange mechanism

198 Chapter 6: Applications

nor our signature scheme can in its current form be instantiated with
Damgard’s and Thorbek’s scheme.

6.1.6 Conclusion

In this work, we presented an actively secure key exchange mechanism based
on Shamir’s secret sharing scheme and derived a signature scheme from it.
The active security measures consist of a piecewise verifiable proof and a
zero-knowledge proof for the GAIP, that in combination prove the knowledge
of the correct share of the secret key and ensure its use in the protocol. For
that we reworked the piecewise verifiable proof and zero-knowledge proof
introduced in [27] to fit the threshold setting of Shamir’s secret sharing
and applied it to the threshold group action of [73]. Active security and
simulatability were proven under the assumption of hardness of the decisional
parallelisation problem.

Furthermore, we characterised the properties necessary for a secret shar-
ing scheme in order for our key exchange mechanism and signature scheme
to be based on it. We gave examples and counter-examples of secret sharing
schemes compatible with our approach to demonstrate its limits. We thereby
demonstrated that cryptographic schemes with secret shared private key in
the HHS setting are not limited to threshold schemes, but applicable to more
general access structures.

6.1.7 Appendix

6.1.7.1 Algorithms

Algorithm 24: Threshold group action

Input: E,S′

1 E0 ← E
2 k ← 0
3 for Pi ∈ S

′ do
4 if Ek /∈ E then
5 Pi outputs � and aborts.

6 else
7 k ← k + 1

8 Pi outputs Ek ← [Li,S′si]E
k−1

9 return Ek

6.1 Fine-grained Access Structures from Isogeny Assumptions 199

Algorithm 25: The ZK proving protocol for the GAIP

Input: s, (Ei,E
′
i)i=1,...,m

1 for j = 1, . . . , λ do
2 bj ←$ Zp

3 for i = 1, . . . ,m do

4 Êij ← [bj]Ei

5 (c1, . . . , cλ)←H (E1,E
′
1, . . . ,Em,E′

m, Ê1,1, . . . , Êm,λ)

6 for j = 1, . . . ,m do
7 rj ← bj − cjs

8 return π ← (c1, . . . , cλ, r1, . . . , rλ)

Algorithm 26: The ZK verifying protocol for the GAIP

Input: π, (Ei,E
′
i)i=1,...,m

1 Parse (c1, . . . , cλ, r1, . . . , rλ)← π
2 for i = 1, . . . ,m and j = 1, . . . , λ do
3 if cj == 0 then

4 Ẽi,j ← [rj]Ei

5 else

6 Ẽi,j ← [rj]E
′
i

7 (c′1, . . . , c
′
λ)←H(E1,E

′
1, . . . ,Em,E′

m, Ẽ1,1, . . . , Ẽm,λ)

8 return (c1, . . . , cλ) == (c
′
1, . . . , c

′
λ)

200 Chapter 6: Applications

Algorithm 27: Proving protocol of the threshold PVP

Input: i, f, S∗, ((E0,E1), (sij)Pj∈S∗)
1 for l ∈ 1, . . . , λ do
2 bl ←$ ZN [x]≤k−1

3 Êl ← [bl(0)]E0

4 y0, y
′
0 ←$ {0,1}

λ

5 C0 ← C(Ê1∥ . . . ∥Êλ, y0)

6 C ′
0 ← C(E0∥E1, y

′
0)

7 for Pj ∈ S
∗ do

8 yj , y
′
j ←$ {0,1}

λ

9 Cj ← C(b1(j)∥ . . . ∥bλ(j), yj)

10 C ′
j ← C(Li,S∗ ⋅ sij , y

′
j)

11 C ← (Cj)Pj∈S∗

12 C ′ ← (C ′
j)Pj∈S∗

13 c1, . . . , cλ ←H(C,C
′)

14 for l ∈ 1, . . . , λ do
15 rl ← bl − cl ⋅Li,S∗ ⋅ f

16 r← (r1, . . . , rλ)

17 (π,{πj}Pj∈S∗)← ((C,C
′, r) ,{(yj , y

′
j)}Pj∈S∗

)

18 return (π,{πj}Pj∈S∗)

6.1 Fine-grained Access Structures from Isogeny Assumptions 201

Algorithm 28: Verifying protocol of the threshold PVP

Input: i, j, S∗, xj , (π,πj)
1 parse (C,C ′, r)← π
2 parse (yj , y

′
j)← πj

3 c1, . . . , cλ ←H(C,C
′)

4 if j == 0 then
5 if C ′

j ≠ C(xj , y
′
j) then

6 return false

7 for l ∈ 1, . . . , λ do

8 Ẽl ← [rl(0)]Ecl

9 return C0 == C(Ẽ1∥ . . . ∥Ẽλ, y0)

10 else

11 if C ′
j ≠ C(Li,S∗xj , y

′
j) then

12 return false

13 return Cj == C(r1(j) + c1 ⋅Li,S∗ ⋅ xj∥ . . . ∥rλ(j) + cλ ⋅Li,S∗ ⋅ xj , yj)

202 Chapter 6: Applications

Algorithm 29: The security game Expdist-transcriptA,Sim (S)

Input: S
1 b←$ {0,1}
2 S∗ ←$ Γ+

3 S′ ←$ 2S
∗
∖ Γ

4 ({si,{sij},{sji}}Pi,Pj∈S ,pk)← KeyGen(S)

5 (K, c)← Encaps(pk)

6 t0 ← Sim(K, c,{si,{sij},{sji}}Pi∈S′,Pj∈S)

7 E0 ← E0, k ← 0
8 for Pi ∈ S

∗ do
9 k ← k + 1

10 Ek ← [Li,S∗si]E
k−1

11 Rk ←$ E
12 R′

k ← [Li,S∗si]Rk

13 (πk,{πk
j }Pj∈S∗

)← PVP.P (i, fi, S
∗, ((Rk,R

′
k), (Li,S∗sij)Pj∈S∗))

14 zkk ← ZK.P ((Rk,R
′
k) , (E

k−1,Ek) , Li,S∗si)

15 t1 ← (E
k, (πk,{πk

j }Pj∈S∗
) , zkk)

k=1,...,#S∗

16 b′ ← A(tb)
17 return b == b′

Algorithm 30: Signature verification protocol

Input: m,s,pk
1 parse (c1, . . . , cλ, z1, . . . , zλ)← s
2 for j = 1, . . . , λ do
3 if cj == 0 then

4 E′
j ← [zj]E0 = [∑Pi∈S∗ bij]E0

5 else

6 E′
j ← [zj]pk = [∑Pi∈S∗ bij −Li,S∗si + s]E0

7 (c′1, . . . , c
′
λ)←H(E

′
1, . . . ,E

′
λ,m)

8 return (c1, . . . , cλ) == (c
′
1, . . . , c

′
λ)

7
Outlook

In this chapter, we shortly discuss some recent and a few lines of possible
future work, some already under investigation.

Masking SIDH

Castryck and Decru presented in [46] an efficient key recovery algorithm
against SIDH along with code demonstrating its practicality. Although their
work relies on the particular choice of starting curve, the work by Maino
and Martindale [132] and Robert [163] has shown that any modification of
SIDH regarding the starting curve does not lead to a secure scheme. Some
countermeasures [143, 85] have been proposed to avoid the Castryck and
Decru family of attacks by masking the degree of the isogenies or the torsion
point images, respectively. Somehow, both approaches significantly degrade
the performance and key size of SIDH by at least an order of magnitude.
We emphasize that some isogeny-based schemes, such as CSIDH and vari-
ants [49, 12], and SQIsign [84], are not based on SIDH, and thus, not harmed
by these attacks. Thus, the focus should be on the further development of
these schemes.

PQC standardization process

In 2022, after selecting CRYSTALS-KYBER for public-key encryption and
key-establishment, and CRYSTALS-DILITHIUM, Falcon, and SPHINCS+
for digital signatures, NIST announced that the standardization process
is continuing with a fourth round. Thereby, four of the alternate key-
establishment candidate algorithms will be considered to a fourth round of
evaluation. Since there are no remaining digital signature candidates under
consideration, NIST is calling38 for additional digital signature proposals.

38https://csrc.nist.gov/projects/pqc-dig-sig

203

https://csrc.nist.gov/projects/pqc-dig-sig

204 Chapter 7: Outlook

Thereby, NIST is primarily interested on diversifying the signature stan-
dards. For this, NIST is mainly interested in signature schemes that are not
based on structured lattices.

Some major threads for further research related to the selected standards
are:

• computer-aided formal verification,

• secure implementation and optimization on different architectures, and

• further cryptanalysis.

NIKE vs KEM

CSIDH is currently the only option for a post-quantum drop-in replacement
for Diffie–Hellman key exchange. Therefore, a promising area for future
research is to understand the impact of the lower bandwidth due to the
smaller number of roundtrips of a CSIDH-based NIKE compared to, for
example, KEMTLS [166].

Further, since several security analyses [35, 158] suggests that CSIDH
may not reach the post-quantum security by the initially proposed parame-
ters, future research should focus on how to further improve the performance
of CSIDH.

Formal verification

Evidently [116], today’s methods for designing, implementing, and deploying
cryptographic mechanisms are prone to introduce vulnerabilities. Usually,
the verification whether cryptographic constructions satisfy desired proper-
ties is done based on handwritten proofs. As complexity increases in the field
of cryptography, so does the complexity of the cryptographic constructions
and their proofs.

Computer-aided cryptography [14] achieves stronger assurances regard-
ing the correctness of implementations. Frameworks like Jasmin [5] provides
both high-level structured control flow and low-level idioms for writing high-
assurance and high-speed cryptography.

Considering the devasting effects of, e.g., micro-architectural at-
tacks [117, 128], recently selected cryptographic algorithms for standard-
ization should provide formally verified implementations [6, 169]. Therefore,
future standardization process should require computer-verified proofs at
some point during the evaluation process.

Bibliography

[1] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domı́nguez,
Alfred Menezes, and Francisco Rodŕıguez-Henŕıquez. On the cost of
computing isogenies between supersingular elliptic curves. In Car-
los Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryp-
tography - SAC 2018 - 25th International Conference, Calgary, AB,
Canada, August 15-17, 2018, Revised Selected Papers, volume 11349
of Lecture Notes in Computer Science, pages 322–343. Springer, 2018.
https://doi.org/10.1007/978-3-030-10970-7_15.

[2] Gora Adj, Jesús-Javier Chi-Domı́nguez, Vı́ctor Mateu, and Francisco
Rodŕıguez-Henŕıquez. Faulty isogenies: a new kind of leakage. IACR
Cryptol. ePrint Arch., page 153, 2022. https://eprint.iacr.org/

2022/153.

[3] Gora Adj, Jesús-Javier Chi-Domı́nguez, and Francisco Rodŕıguez-
Henŕıquez. On new Vélu’s formulae and their applications to CSIDH
and B-SIDH constant-time implementations, 2020. https://eprint.
iacr.org/2020/1109.

[4] Toru Akishita and Tsuyoshi Takagi. Zero-value point attacks on
elliptic curve cryptosystem. In Colin Boyd and Wenbo Mao, edi-
tors, Information Security, 6th International Conference, ISC 2003,
Bristol, UK, October 1-3, 2003, Proceedings, volume 2851 of Lecture
Notes in Computer Science, pages 218–233. Springer, 2003. https:

//doi.org/10.1007/10958513_17.

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,
Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-assurance
and high-speed cryptography. In Bhavani Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,

205

https://doi.org/10.1007/978-3-030-10970-7_15
https://eprint.iacr.org/2022/153
https://eprint.iacr.org/2022/153
https://eprint.iacr.org/2020/1109
https://eprint.iacr.org/2020/1109
https://doi.org/10.1007/10958513_17
https://doi.org/10.1007/10958513_17

206 Bibliography

pages 1807–1823. ACM, 2017. https://doi.org/10.1145/3133956.

3134078.

[6] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin
Grégoire, Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira,
Hugo Pacheco, Miguel Quaresma, Peter Schwabe, Antoine Séré, and
Pierre-Yves Strub. Formally verifying kyber episode iv: Implementa-
tion correctness. Cryptology ePrint Archive, Paper 2023/215, 2023.
https://eprint.iacr.org/2023/215.

[7] Thomas Aulbach, Fabio Campos, Juliane Krämer, Simona Samard-
jiska, and Marc Stöttinger. Separating oil and vinegar with a sin-
gle trace. Cryptology ePrint Archive, Paper 2023/335, 2023. https:

//eprint.iacr.org/2023/335.

[8] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens,
Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas
Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja
Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen,
Christian Rechberger, Joost Rijneveld, Peter Schwabe, and Bas West-
erbaan. SPHINCS+: Algorithm specification and supporting doc-
umentation. Submission to the NIST Post-Quantum Cryptography
Standardization Project [152], 2020. https://sphincs.org/.

[9] Roberto Avanzi, Joppe Bos, Láo Ducas, Eike Kiltz, Tancrède Lep-
oint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS–Kyber: Algorithm specifica-
tion and supporting documentation. Submission to the NIST Post-
Quantum Cryptography Standardization Project [152], 2017. https:

//pq-crystals.org/kyber.

[10] Reza Azarderakhsh, Elena Bakos Lang, David Jao, and Brian Koziel.
EdSIDH: Supersingular isogeny Diffie–Hellman key exchange on Ed-
wards curves. In Anupam Chattopadhyay, Chester Rebeiro, and Yuval
Yarom, editors, Security, Privacy, and Applied Cryptography Engi-
neering - 8th International Conference, SPACE 2018, Kanpur, In-
dia, December 15-19, 2018, Proceedings, volume 11348 of Lecture
Notes in Computer Science, pages 125–141. Springer, 2018. https:

//doi.org/10.1007/978-3-030-05072-6_8.

[11] Anubhab Baksi, Shivam Bhasin, Jakub Breier, Dirmanto Jap, and
Dhiman Saha. A survey on fault attacks on symmetric key cryp-
tosystems. ACM Comput. Surv., mar 2022. Just Accepted. https:
//dl.acm.org/doi/10.1145/3530054.

[12] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou,
Tanja Lange, Michael Meyer, Benjamin Smith, and Jana Sotáková.

https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3133956.3134078
https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2023/335
https://eprint.iacr.org/2023/335
https://sphincs.org/
https://pq-crystals.org/kyber
https://pq-crystals.org/kyber
https://doi.org/10.1007/978-3-030-05072-6_8
https://doi.org/10.1007/978-3-030-05072-6_8
https://dl.acm.org/doi/10.1145/3530054
https://dl.acm.org/doi/10.1145/3530054

Bibliography 207

CTIDH: faster constant-time CSIDH. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2021(4):351–387, 2021. https://doi.org/10.46586/

tches.v2021.i4.351-387.

[13] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and
Claire Whelan. The sorcerer’s apprentice guide to fault attacks. Proc.
IEEE, 94(2):370–382, 2006. https://doi.org/10.1109/JPROC.2005.
862424.

[14] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet,
Cas Cremers, Kevin Liao, and Bryan Parno. SoK: Computer-aided
cryptography. In 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 777–795.
IEEE, 2021. https://doi.org/10.1109/SP40001.2021.00008.

[15] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild.
Horizontal collision correlation attack on elliptic curves. In Tanja
Lange, Kristin E. Lauter, and Petr Lisonek, editors, Selected Areas in
Cryptography - SAC 2013 - 20th International Conference, Burnaby,
BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 553–570. Springer,
2013. https://doi.org/10.1007/978-3-662-43414-7_28.

[16] Daniel J. Bernstein. djbsort, 2018. https://sorting.cr.yp.to.

[17] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Chris-
tiane Peters. Twisted Edwards Curves. In Serge Vaudenay, editor,
Progress in Cryptology - AFRICACRYPT 2008, First International
Conference on Cryptology in Africa, Casablanca, Morocco, June 11-14,
2008. Proceedings, volume 5023 of Lecture Notes in Computer Science,
pages 389–405. Springer, 2008. https://doi.org/10.1007/978-3-

540-68164-9_26.

[18] Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Pe-
ters. ECM using Edwards curves. Math. Comput., 82(282):1139–1179,
2013. https://doi.org/10.1090/S0025-5718-2012-02633-0.

[19] Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin
Smith. Faster computation of isogenies of large prime degree. Open
Book Series, 4(1):39–55, 2020. https://arxiv.org/abs/2003.10118.

[20] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-
Yin Yang. High-speed high-security signatures. J. Cryptogr. Eng.,
2(2):77–89, 2012. https://doi.org/10.1007/s13389-012-0027-1.

[21] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
Elligator: elliptic-curve points indistinguishable from uniform random

https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/978-3-662-43414-7_28
https://sorting.cr.yp.to
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1090/S0025-5718-2012-02633-0
https://arxiv.org/abs/2003.10118
https://doi.org/10.1007/s13389-012-0027-1

208 Bibliography

strings. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, ed-
itors, 2013 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
967–980. ACM, 2013. https://doi.org/10.1145/2508859.2516734.

[22] Daniel J. Bernstein and Tanja Lange. Analysis and Optimization of
Elliptic-Curve Single-Scalar Multiplication. In Gary L. Mullen, Daniel
Panario, and Igor E. Shparlinski, editors, Finite Fields and Applica-
tions: Papers from the 8th International Conference, pages 1–19. Con-
temporary Mathematics, 461, American Mathematical Society, 2008.
http://eprint.iacr.org/2007/455.

[23] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz
Panny. Quantum circuits for the CSIDH: optimizing quantum evalua-
tion of isogenies. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II, volume
11477 of Lecture Notes in Computer Science, pages 409–441. Springer,
2019. https://doi.org/10.1007/978-3-030-17656-3_15.

[24] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd compu-
tation and modular inversion. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2019(3):340–398, 2019. https://doi.org/10.13154/tches.

v2019.i3.340-398.

[25] Thomas Beth, Hans-Joachim Knobloch, and Marcus Otten. Verifi-
able secret sharing for monotone access structures. In Dorothy E.
Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Vic-
toria Ashby, editors, CCS ’93, Proceedings of the 1st ACM Con-
ference on Computer and Communications Security, Fairfax, Vir-
ginia, USA, November 3-5, 1993, pages 189–194. ACM, 1993. https:
//doi.org/10.1145/168588.168612.

[26] Luk Bettale, Simon Montoya, and Guénaël Renault. Safe-Error Anal-
ysis of Post-Quantum Cryptography Mechanisms - Short Paper -. In
18th Workshop on Fault Detection and Tolerance in Cryptography,
FDTC 2021, Milan, Italy, September 17, 2021, pages 39–44. IEEE,
2021. https://doi.org/10.1109/FDTC53659.2021.00015.

[27] Ward Beullens, Lucas Disson, Robi Pedersen, and Frederik Ver-
cauteren. CSI-RAShi: distributed key generation for CSIDH. In
Jung Hee Cheon and Jean-Pierre Tillich, editors, Post-Quantum Cryp-
tography - 12th International Workshop, PQCrypto 2021, Daejeon,
South Korea, July 20-22, 2021, Proceedings, volume 12841 of Lecture
Notes in Computer Science, pages 257–276. Springer, 2021. https:

//doi.org/10.1007/978-3-030-81293-5_14.

https://doi.org/10.1145/2508859.2516734
http://eprint.iacr.org/2007/455
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.13154/tches.v2019.i3.340-398
https://doi.org/10.13154/tches.v2019.i3.340-398
https://doi.org/10.1145/168588.168612
https://doi.org/10.1145/168588.168612
https://doi.org/10.1109/FDTC53659.2021.00015
https://doi.org/10.1007/978-3-030-81293-5_14
https://doi.org/10.1007/978-3-030-81293-5_14

Bibliography 209

[28] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-
FiSh: efficient isogeny based signatures through class group compu-
tations. In Steven D. Galbraith and Shiho Moriai, editors, Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on
the Theory and Application of Cryptology and Information Security,
Kobe, Japan, December 8-12, 2019, Proceedings, Part I, volume 11921
of Lecture Notes in Computer Science, pages 227–247. Springer, 2019.
https://doi.org/10.1007/978-3-030-34578-5_9.

[29] Patrick Beuth. Verschlüsseln für den Tag X. ZEIT ON-
LINE, 2015. https://www.zeit.de/digital/datenschutz/2015-

09/post-quanten-kryptografie-tanja-lange-pqcrypto.

[30] Jean-François Biasse, Annamaria Iezzi, and Michael J. Jacobson Jr.
A note on the security of CSIDH. In Debrup Chakraborty and Tetsu
Iwata, editors, Progress in Cryptology - INDOCRYPT 2018 - 19th
International Conference on Cryptology in India, New Delhi, India,
December 9-12, 2018, Proceedings, volume 11356 of Lecture Notes in
Computer Science, pages 153–168. Springer, 2018. https://doi.org/
10.1007/978-3-030-05378-9_9.

[31] G. R. Blakley. Safeguarding cryptographic keys. In Richard E. Merwin,
Jacqueline T. Zanca, and Merlin. Smith, editors, 1979 National Com-
puter Conference: June 4–7, 1979, New York, New York, volume 48 of
AFIPS Conference proceedings, pages 313–317, pub-AFIPS:adr, 1979.
AFIPS Press. https://doi.org/10.1109/MARK.1979.8817296.

[32] Johannes Blömer, Ricardo Gomes da Silva, Peter Günther, Juliane
Krämer, and Jean-Pierre Seifert. A Practical Second-Order Fault At-
tack against a Real-World Pairing Implementation. In Assia Tria and
Dooho Choi, editors, 2014 Workshop on Fault Diagnosis and Tol-
erance in Cryptography, FDTC 2014, Busan, South Korea, Septem-
ber 23, 2014, pages 123–136. IEEE Computer Society, 2014. https:

//doi.org/10.1109/FDTC.2014.22.

[33] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the im-
portance of checking cryptographic protocols for faults (extended ab-
stract). In Walter Fumy, editor, Advances in Cryptology - EURO-
CRYPT ’97, International Conference on the Theory and Applica-
tion of Cryptographic Techniques, Konstanz, Germany, May 11-15,
1997, Proceeding, volume 1233 of Lecture Notes in Computer Sci-
ence, pages 37–51. Springer, 1997. https://doi.org/10.1007/3-

540-69053-0_4.

[34] Dan Boneh and Victor Shoup. A graduate course in applied cryptog-
raphy. Draft 0.5, 2020. http://toc.cryptobook.us/.

https://doi.org/10.1007/978-3-030-34578-5_9
https://www.zeit.de/digital/datenschutz/2015-09/post-quanten-kryptografie-tanja-lange-pqcrypto
https://www.zeit.de/digital/datenschutz/2015-09/post-quanten-kryptografie-tanja-lange-pqcrypto
https://doi.org/10.1007/978-3-030-05378-9_9
https://doi.org/10.1007/978-3-030-05378-9_9
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1109/FDTC.2014.22
https://doi.org/10.1109/FDTC.2014.22
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
http://toc.cryptobook.us/

210 Bibliography

[35] Xavier Bonnetain and André Schrottenloher. Quantum security anal-
ysis of CSIDH. In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II, volume 12106
of Lecture Notes in Computer Science, pages 493–522. Springer, 2020.
https://doi.org/10.1007/978-3-030-45724-2_17.

[36] Xavier Bonnetain and André Schrottenloher. Quantum Security Anal-
ysis of CSIDH and Ordinary Isogeny-based Schemes. Cryptology
ePrint Archive, Report 2018/537, 2018. https://eprint.iacr.org/

2018/537.

[37] Jakub Breier and Xiaolu Hou. How practical are fault injection attacks,
really? IEEE Access, 10:113122–113130, 2022. https://doi.org/10.
1109/ACCESS.2022.3217212.

[38] Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domı́nguez,
Michael Meyer, Krijn Reijnders, Francisco Rodŕıguez-Henŕıquez, Pe-
ter Schwabe, and Thom Wiggers. On the practicality of post-quantum
TLS using large-parameter CSIDH. Cryptology ePrint Archive, Paper
2023/793, 2023. https://eprint.iacr.org/2023/793.

[39] Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Müller, Amber
Sprenkels, and Benôıt Viguier. Assembly or optimized C for lightweight
cryptography on RISC-V? In Stephan Krenn, Haya Shulman, and
Serge Vaudenay, editors, Cryptology and Network Security - 19th In-
ternational Conference, CANS 2020, Vienna, Austria, December 14-
16, 2020, Proceedings, volume 12579 of Lecture Notes in Computer
Science, pages 526–545. Springer, 2020. https://doi.org/10.1007/

978-3-030-65411-5_26.

[40] Fabio Campos, Matthias J. Kannwischer, Michael Meyer, Hiroshi
Onuki, and Marc Stöttinger. Trouble at the CSIDH: Protecting CSIDH
with Dummy-Operations Against Fault Injection Attacks. In 17th
Workshop on Fault Detection and Tolerance in Cryptography, FDTC
2020, Milan, Italy, September 13, 2020, pages 57–65. IEEE, 2020.
https://doi.org/10.1109/FDTC51366.2020.00015.

[41] Fabio Campos, Tim Kohlstadt, Steffen Reith, and Marc Stöttinger.
LMS vs XMSS: comparison of stateful hash-based signature schemes
on ARM Cortex-M4. In Abderrahmane Nitaj and Amr M. Youssef,
editors, Progress in Cryptology - AFRICACRYPT 2020 - 12th Inter-
national Conference on Cryptology in Africa, Cairo, Egypt, July 20-
22, 2020, Proceedings, volume 12174 of Lecture Notes in Computer
Science, pages 258–277. Springer, 2020. https://doi.org/10.1007/

978-3-030-51938-4_13.

https://doi.org/10.1007/978-3-030-45724-2_17
https://eprint.iacr.org/2018/537
https://eprint.iacr.org/2018/537
https://doi.org/10.1109/ACCESS.2022.3217212
https://doi.org/10.1109/ACCESS.2022.3217212
https://eprint.iacr.org/2023/793
https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.1109/FDTC51366.2020.00015
https://doi.org/10.1007/978-3-030-51938-4_13
https://doi.org/10.1007/978-3-030-51938-4_13

Bibliography 211

[42] Fabio Campos, Juliane Krämer, and Marcel Müller. Safe-error at-
tacks on SIKE and CSIDH. In Lejla Batina, Stjepan Picek, and
Mainack Mondal, editors, Security, Privacy, and Applied Cryptog-
raphy Engineering - 11th International Conference, SPACE 2021,
Kolkata, India, December 10-13, 2021, Proceedings, volume 13162 of
Lecture Notes in Computer Science, pages 104–125. Springer, 2021.
https://doi.org/10.1007/978-3-030-95085-9_6.

[43] Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc Stöttinger.
Patient zero and patient six: Zero-value and correlation attacks on
CSIDH and SIKE. In Benjamin Smith and Huapeng Wu, editors,
Selected Areas in Cryptography - SAC 2022 - 29th International Con-
ference, Ontario, Canada, August 24-26, 2022, Revised Selected Pa-
pers, Lecture Notes in Computer Science. Springer, 2022. https:

//eprint.iacr.org/2022/904.

[44] Fabio Campos, Michael Meyer, Steffen Sanwald, Marc Stöttinger,
and Yi Wang. Post-quantum cryptography for ECU security use
cases. In 17th escar Europe : embedded security in cars (Konferen-
zveröffentlichung). 2019. https://doi.org/10.13154/294-6673.

[45] Fabio Campos and Philipp Muth. On actively secure fine-grained ac-
cess structures from isogeny assumptions. In Jung Hee Cheon and
Thomas Johansson, editors, Post-Quantum Cryptography - 13th In-
ternational Workshop, PQCrypto 2022, Virtual Event, September 28-
30, 2022, Proceedings, volume 13512 of Lecture Notes in Computer
Science, pages 375–398. Springer, 2022. https://eprint.iacr.org/

2021/1109.

[46] Wouter Castryck and Thomas Decru. An efficient key recovery attack
on SIDH (preliminary version). IACR Cryptol. ePrint Arch., page 975,
2022. https://eprint.iacr.org/2022/975.

[47] Wouter Castryck, Thomas Decru, and Frederik Vercauteren. Radical
isogenies. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2020 - 26th International Conference on the
Theory and Application of Cryptology and Information Security, Dae-
jeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume
12492 of Lecture Notes in Computer Science, pages 493–519. Springer,
2020.

[48] Wouter Castryck, Steven Galbraith, and Reza Rezaeian Farashahi.
Efficient arithmetic on elliptic curves using a mixed Edwards-
Montgomery representation. Cryptology ePrint Archive, Report
2008/218, 2008. http://eprint.iacr.org/2008/218.

https://doi.org/10.1007/978-3-030-95085-9_6
https://eprint.iacr.org/2022/904
https://eprint.iacr.org/2022/904
https://doi.org/10.13154/294-6673
https://eprint.iacr.org/2021/1109
https://eprint.iacr.org/2021/1109
https://eprint.iacr.org/2022/975
http://eprint.iacr.org/2008/218

212 Bibliography

[49] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. CSIDH: an efficient post-quantum commutative group
action. In Thomas Peyrin and Steven D. Galbraith, editors, Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on
the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part III,
volume 11274 of Lecture Notes in Computer Science, pages 395–427.
Springer, 2018. https://doi.org/10.1007/978-3-030-03332-3_15.

[50] Wouter Castryck, Lorenz Panny, and Frederik Vercauteren. Ratio-
nal isogenies from irrational endomorphisms. In Anne Canteaut and
Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 -
39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Pro-
ceedings, Part II, volume 12106 of Lecture Notes in Computer Science,
pages 523–548. Springer, 2020. https://doi.org/10.1007/978-3-

030-45724-2_18.

[51] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-
Domı́nguez, Luca De Feo, Francisco Rodŕıguez-Henŕıquez, and Ben-
jamin Smith. Stronger and faster side-channel protections for CSIDH.
In Peter Schwabe and Nicolas Thériault, editors, Progress in Cryp-
tology - LATINCRYPT 2019 - 6th International Conference on Cryp-
tology and Information Security in Latin America, Santiago de Chile,
Chile, October 2-4, 2019, Proceedings, volume 11774 of Lecture Notes
in Computer Science, pages 173–193. Springer, 2019. https://doi.

org/10.1007/978-3-030-30530-7_9.

[52] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, edi-
tors, Cryptographic Hardware and Embedded Systems - CHES 2002,
4th International Workshop, Redwood Shores, CA, USA, August 13-
15, 2002, Revised Papers, volume 2523 of Lecture Notes in Computer
Science, pages 13–28. Springer, 2002. https://doi.org/10.1007/3-

540-36400-5_3.

[53] Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Crypto-
graphic hash functions from expander graphs. J. Cryptol., 22(1):93–
113, 2009.

[54] Jorge Chávez-Saab, Jesús-Javier Chi-Domı́nguez, Samuel Jaques, and
Francisco Rodŕıguez-Henŕıquez. The SQALE of CSIDH: sublinear
Vélu quantum-resistant isogeny action with low exponents. Journal
of Cryptographic Engineering, Aug 2021. https://doi.org/10.1007/
s13389-021-00271-w.

https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-45724-2_18
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w

Bibliography 213

[55] Jesús-Javier Chi-Domı́nguez and Krijn Reijnders. Fully projective rad-
ical isogenies in constant-time. In Steven D. Galbraith, editor, Top-
ics in Cryptology - CT-RSA 2022 - Cryptographers’ Track at the RSA
Conference 2022, Virtual Event, March 1-2, 2022, Proceedings, volume
13161 of Lecture Notes in Computer Science, pages 73–95. Springer,
2022. https://doi.org/10.1007/978-3-030-95312-6_4.

[56] Jesús-Javier Chi-Domı́nguez and Francisco Rodŕıguez-Henŕıquez. Op-
timal strategies for CSIDH. Adv. Math. Commun., 16(2):383–411,
2022. https://doi.org/10.3934/amc.2020116.

[57] Andrew M. Childs, David Jao, and Vladimir Soukharev. Construct-
ing elliptic curve isogenies in quantum subexponential time. J. Math.
Cryptol., 8(1):1–29, 2014. https://doi.org/10.1515/jmc-2012-

0016.

[58] Sreeja Chowdhury, Ana Covic, Rabin Yu Acharya, Spencer Dupee,
Fatemeh Ganji, and Domenic Forte. Physical security in the post-
quantum era: A survey on side-channel analysis, random number gen-
erators, and physically unclonable functions. CoRR, abs/2005.04344,
2020. https://arxiv.org/abs/2005.04344.

[59] Craig Costello. Supersingular Isogeny Key Exchange for Beginners. In
Kenneth G. Paterson and Douglas Stebila, editors, Selected Areas in
Cryptography - SAC 2019 - 26th International Conference, Waterloo,
ON, Canada, August 12-16, 2019, Revised Selected Papers, volume
11959 of Lecture Notes in Computer Science, pages 21–50. Springer,
2019. https://doi.org/10.1007/978-3-030-38471-5_2.

[60] Craig Costello. B-SIDH: Supersingular Isogeny Diffie–Hellman Using
Twisted Torsion. In Shiho Moriai and Huaxiong Wang, editors, Ad-
vances in Cryptology - ASIACRYPT 2020 - 26th International Confer-
ence on the Theory and Application of Cryptology and Information Se-
curity, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part
II, volume 12492 of Lecture Notes in Computer Science, pages 440–463.
Springer, 2020. https://doi.org/10.1007/978-3-030-64834-3_15.

[61] Craig Costello. The case for SIKE: A decade of the supersingular
isogeny problem. IACR Cryptol. ePrint Arch., page 543, 2021. https:
//eprint.iacr.org/2021/543.

[62] Craig Costello and Hüseyin Hisil. A simple and compact algorithm
for SIDH with arbitrary degree isogenies. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017
- 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December

https://doi.org/10.1007/978-3-030-95312-6_4
https://doi.org/10.3934/amc.2020116
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://arxiv.org/abs/2005.04344
https://doi.org/10.1007/978-3-030-38471-5_2
https://doi.org/10.1007/978-3-030-64834-3_15
https://eprint.iacr.org/2021/543
https://eprint.iacr.org/2021/543

214 Bibliography

3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in Com-
puter Science, pages 303–329. Springer, 2017. https://doi.org/10.

1007/978-3-319-70697-9_11.

[63] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algo-
rithms for supersingular isogeny diffie–hellman. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016
- 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part I, volume 9814 of
Lecture Notes in Computer Science, pages 572–601. Springer, 2016.
https://doi.org/10.1007/978-3-662-53018-4_21.

[64] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algo-
rithms for supersingular isogeny diffie–hellman. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016
- 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part I, volume 9814 of
Lecture Notes in Computer Science, pages 572–601. Springer, 2016.

[65] Craig Costello, Patrick Longa, and Michael Naehrig. SIDH Library
v2.0, 2016. https://github.com/Microsoft/PQCrypto-SIDH/tree/

v2.0.

[66] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291, 2006. https://eprint.iacr.org/2006/

291.

[67] Daniele Cozzo and Nigel P. Smart. Sharing the LUOV: threshold
post-quantum signatures. In Martin Albrecht, editor, Cryptogra-
phy and Coding - 17th IMA International Conference, IMACC 2019,
Oxford, UK, December 16-18, 2019, Proceedings, volume 11929 of
Lecture Notes in Computer Science, pages 128–153. Springer, 2019.
https://doi.org/10.1007/978-3-030-35199-1_7.

[68] Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up CSI-FiSh
secret keys to produce an actively secure distributed signing proto-
col. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum
Cryptography - 11th International Conference, PQCrypto 2020, Paris,
France, April 15-17, 2020, Proceedings, volume 12100 of Lecture
Notes in Computer Science, pages 169–186. Springer, 2020. https:

//doi.org/10.1007/978-3-030-44223-1_10.

[69] Ivan Damg̊ard and Rune Thorbek. Linear integer secret sharing and
distributed exponentiation. In Moti Yung, Yevgeniy Dodis, Aggelos
Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC

https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-662-53018-4_21
https://github.com/Microsoft/PQCrypto-SIDH/tree/v2.0
https://github.com/Microsoft/PQCrypto-SIDH/tree/v2.0
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-35199-1_7
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-44223-1_10

Bibliography 215

2006, 9th International Conference on Theory and Practice of Public-
Key Cryptography, New York, NY, USA, April 24-26, 2006, Proceed-
ings, volume 3958 of Lecture Notes in Computer Science, pages 75–90.
Springer, 2006. https://doi.org/10.1007/11745853_6.

[70] Luca De Feo. Mathematics of isogeny based cryptography. CoRR,
abs/1711.04062, 2017. http://arxiv.org/abs/1711.04062.

[71] Luca De Feo and Steven D. Galbraith. SeaSign: compact isogeny sig-
natures from class group actions. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceed-
ings, Part III, volume 11478 of Lecture Notes in Computer Science,
pages 759–789. Springer, 2019. https://doi.org/10.1007/978-3-

030-17659-4_26.

[72] Luca De Feo, Jean Kieffer, and Benjamin Smith. Towards practical
key exchange from ordinary isogeny graphs. In Thomas Peyrin and
Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT
2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part III, volume 11274 of Lecture
Notes in Computer Science, pages 365–394. Springer, 2018. https:

//doi.org/10.1007/978-3-030-03332-3_14.

[73] Luca De Feo and Michael Meyer. Threshold schemes from isogeny
assumptions. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, Public-Key Cryptography - PKC 2020 - 23rd
IACR International Conference on Practice and Theory of Public-Key
Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part II,
volume 12111 of Lecture Notes in Computer Science, pages 187–212.
Springer, 2020. https://doi.org/10.1007/978-3-030-45388-6_7.

[74] Luca De Feo, Nadia El Mrabet, Aymeric Genêt, Novak Kaluderovic,
Natacha Linard de Guertechin, Simon Pontié, and Élise Tasso. SIKE
channels zero-value side-channel attacks on SIKE. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2022(3):264–289, 2022. https://doi.org/
10.46586/tches.v2022.i3.264-289.

[75] Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindale,
Lorenz Panny, Christophe Petit, and Katherine E. Stange. Improved
torsion-point attacks on SIDH variants. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st An-
nual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16-20, 2021, Proceedings, Part III, volume 12827 of

https://doi.org/10.1007/11745853_6
http://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.46586/tches.v2022.i3.264-289
https://doi.org/10.46586/tches.v2022.i3.264-289

216 Bibliography

Lecture Notes in Computer Science, pages 432–470. Springer, 2021.
https://doi.org/10.1007/978-3-030-84252-9_15.

[76] Bert den Boer. Diffie-hellman is as strong as discrete log for cer-
tain primes. In Shafi Goldwasser, editor, Advances in Cryptology -
CRYPTO ’88, 8th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 21-25, 1988, Proceedings, volume
403 of Lecture Notes in Computer Science, pages 530–539. Springer,
1988. https://doi.org/10.1007/0-387-34799-2_38.

[77] Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Trans. Inf. Theory, 22(6):644–654, 1976. https:

//doi.org/10.1109/TIT.1976.1055638.

[78] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Security of the Fiat-Shamir transformation in the quantum random-
oracle model. In Alexandra Boldyreva and Daniele Micciancio, edi-
tors, Advances in Cryptology - CRYPTO 2019 - 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part II, volume 11693 of Lecture Notes in Computer
Science, pages 356–383. Springer, 2019. https://doi.org/10.1007/

978-3-030-26951-7_13.

[79] Julien Duman, Dominik Hartmann, Eike Kiltz, Sabrina Kunzweiler,
Jonas Lehmann, and Doreen Riepel. Group action key encapsulation
and non-interactive key exchange in the QROM. IACR Cryptol. ePrint
Arch., page 1230, 2022. https://eprint.iacr.org/2022/1230.

[80] Harold Edwards. A normal form for elliptic curves. Bulletin of the
American mathematical society, 44(3):393–422, 2007. https://doi.

org/10.1090/S0273-0979-07-01153-6.

[81] Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Ti-
bouchi. Side-channel attacks on BLISS lattice-based signatures: Ex-
ploiting branch tracing against strongswan and electromagnetic ema-
nations in microcontrollers. In Bhavani Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1857–
1874. ACM, 2017. https://doi.org/10.1145/3133956.3134028.

[82] Reza Rezaeian Farashahi and Seyed Gholamhossein Hosseini. Dif-
ferential addition on twisted edwards curves. In Josef Pieprzyk and
Suriadi Suriadi, editors, Information Security and Privacy - 22nd Aus-
tralasian Conference, ACISP 2017, Auckland, New Zealand, July 3-5,
2017, Proceedings, Part II, volume 10343 of Lecture Notes in Com-
puter Science, pages 366–378. Springer, 2017. https://doi.org/10.

1007/978-3-319-59870-3_21.

https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/0-387-34799-2_38
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-26951-7_13
https://eprint.iacr.org/2022/1230
https://doi.org/10.1090/S0273-0979-07-01153-6
https://doi.org/10.1090/S0273-0979-07-01153-6
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1007/978-3-319-59870-3_21
https://doi.org/10.1007/978-3-319-59870-3_21

Bibliography 217

[83] Armando Faz-Hernández, Julio César López-Hernández, Eduardo
Ochoa-Jiménez, and Francisco Rodŕıguez-Henŕıquez. A faster soft-
ware implementation of the supersingular isogeny diffie–hellman key
exchange protocol. IEEE Trans. Computers, 67(11):1622–1636, 2018.
https://doi.org/10.1109/TC.2017.2771535.

[84] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and
Benjamin Wesolowski. SQISign: Compact post-quantum signatures
from quaternions and isogenies. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020 - 26th Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part I, volume 12491 of Lecture Notes in Computer Sci-
ence, pages 64–93. Springer, 2020. https://doi.org/10.1007/978-

3-030-64837-4_3.

[85] Tako Boris Fouotsa. SIDH with masked torsion point images. IACR
Cryptol. ePrint Arch., page 1054, 2022. https://eprint.iacr.org/

2022/1054.

[86] Tako Boris Fouotsa and Christophe Petit. A new adaptive attack on
SIDH. In Steven D. Galbraith, editor, Topics in Cryptology - CT-RSA
2022 - Cryptographers’ Track at the RSA Conference 2022, Virtual
Event, March 1-2, 2022, Proceedings, volume 13161 of Lecture Notes
in Computer Science, pages 322–344. Springer, 2022. https://doi.

org/10.1007/978-3-030-95312-6_14.

[87] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G.
Paterson. Non-interactive key exchange. In Kaoru Kurosawa and
Goichiro Hanaoka, editors, Public-Key Cryptography - PKC 2013 -
16th International Conference on Practice and Theory in Public-Key
Cryptography, Nara, Japan, February 26 - March 1, 2013. Proceedings,
volume 7778 of Lecture Notes in Computer Science, pages 254–271.
Springer, 2013. https://doi.org/10.1007/978-3-642-36362-7_17.

[88] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. In Michael J. Wiener, edi-
tor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 537–554. Springer, 1999. https://doi.org/10.1007/3-

540-48405-1_34.

[89] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cam-
bridge University Press, 2012. https://www.math.auckland.ac.nz/

%7Esgal018/crypto-book/crypto-book.html.

https://doi.org/10.1109/TC.2017.2771535
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/978-3-030-64837-4_3
https://eprint.iacr.org/2022/1054
https://eprint.iacr.org/2022/1054
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://www.math.auckland.ac.nz/%7Esgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/%7Esgal018/crypto-book/crypto-book.html

218 Bibliography

[90] Steven D. Galbraith. Authenticated key exchange for SIDH. Cryptol-
ogy ePrint Archive, Report 2018/266, 2018. https://eprint.iacr.

org/2018/266.

[91] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo
Ti. On the security of supersingular isogeny cryptosystems. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptol-
ogy - ASIACRYPT 2016 - 22nd International Conference on the The-
ory and Application of Cryptology and Information Security, Hanoi,
Vietnam, December 4-8, 2016, Proceedings, Part I, volume 10031
of Lecture Notes in Computer Science, pages 63–91, 2016. https:

//doi.org/10.1007/978-3-662-53887-6_3.

[92] Steven D. Galbraith, Christophe Petit, and Javier Silva. Identifica-
tion protocols and signature schemes based on supersingular isogeny
problems. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I, volume
10624 of Lecture Notes in Computer Science, pages 3–33. Springer,
2017. https://doi.org/10.1007/978-3-319-70694-8_1.

[93] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Inf. Theory, 31(4):469–472,
1985. https://doi.org/10.1109/TIT.1985.1057074.

[94] Alexandre Gélin and Benjamin Wesolowski. Loop-abort faults on su-
persingular isogeny cryptosystems. In Tanja Lange and Tsuyoshi Tak-
agi, editors, Post-Quantum Cryptography - 8th International Work-
shop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017,
Proceedings, volume 10346 of Lecture Notes in Computer Science,
pages 93–106. Springer, 2017. https://doi.org/10.1007/978-3-

319-59879-6_6.

[95] Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kalud-
erovic. Full key recovery side-channel attack against ephemeral SIKE
on the Cortex-M4. In Shivam Bhasin and Fabrizio De Santis, ed-
itors, Constructive Side-Channel Analysis and Secure Design - 12th
International Workshop, COSADE 2021, Lugano, Switzerland, Octo-
ber 25-27, 2021, Proceedings, volume 12910 of Lecture Notes in Com-
puter Science, pages 228–254. Springer, 2021. https://doi.org/10.

1007/978-3-030-89915-8_11.

[96] Nahid Farhady Ghalaty, Aydin Aysu, and Patrick Schaumont. Ana-
lyzing and eliminating the causes of fault sensitivity analysis. In Ger-
hard P. Fettweis and Wolfgang Nebel, editors, Design, Automation &

https://eprint.iacr.org/2018/266
https://eprint.iacr.org/2018/266
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1007/978-3-030-89915-8_11
https://doi.org/10.1007/978-3-030-89915-8_11

Bibliography 219

Test in Europe Conference & Exhibition, DATE 2014, Dresden, Ger-
many, March 24-28, 2014, pages 1–6. European Design and Automa-
tion Association, 2014. https://doi.org/10.7873/DATE.2014.217.

[97] Benedikt Gierlichs, Jörn-Marc Schmidt, and Michael Tunstall. Infec-
tive Computation and Dummy Rounds: Fault Protection for Block
Ciphers without Check-before-Output. In Alejandro Hevia and Gre-
gory Neven, editors, Progress in Cryptology - LATINCRYPT 2012 -
2nd International Conference on Cryptology and Information Security
in Latin America, Santiago, Chile, October 7-10, 2012. Proceedings,
volume 7533 of Lecture Notes in Computer Science, pages 305–321.
Springer, 2012. https://doi.org/10.1007/978-3-642-33481-8_17.

[98] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A ”paradox-
ical’”solution to the signature problem (abstract). In G. R. Blakley
and David Chaum, editors, Advances in Cryptology, Proceedings of
CRYPTO ’84, Santa Barbara, California, USA, August 19-22, 1984,
Proceedings, volume 196 of Lecture Notes in Computer Science, page
467. Springer, 1984. https://doi.org/10.1007/3-540-39568-7_37.

[99] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signa-
ture scheme secure against adaptive chosen-message attacks. SIAM J.
Comput., 17(2):281–308, 1988. https://doi.org/10.1137/0217017.

[100] Louis Goubin. A refined power-analysis attack on elliptic curve cryp-
tosystems. In Yvo Desmedt, editor, Public Key Cryptography - PKC
2003, 6th International Workshop on Theory and Practice in Public
Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings,
volume 2567 of Lecture Notes in Computer Science, pages 199–210.
Springer, 2003. https://doi.org/10.1007/3-540-36288-6_15.

[101] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In STOC 1996, pages 212–219, 1996. https://arxiv.org/

abs/quant-ph/9605043.

[102] Javier Herranz and Germán Sáez. Verifiable secret sharing for general
access structures, with application to fully distributed proxy signa-
tures. In Rebecca N. Wright, editor, Financial Cryptography, 7th
International Conference, FC 2003, Guadeloupe, French West In-
dies, January 27-30, 2003, Revised Papers, volume 2742 of Lecture
Notes in Computer Science, pages 286–302. Springer, 2003. https:

//doi.org/10.1007/978-3-540-45126-6_21.

[103] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Daw-
son. Twisted Edwards Curves Revisited. In Josef Pieprzyk, editor,

https://doi.org/10.7873/DATE.2014.217
https://doi.org/10.1007/978-3-642-33481-8_17
https://doi.org/10.1007/3-540-39568-7_37
https://doi.org/10.1137/0217017
https://doi.org/10.1007/3-540-36288-6_15
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.1007/978-3-540-45126-6_21
https://doi.org/10.1007/978-3-540-45126-6_21

220 Bibliography

Advances in Cryptology - ASIACRYPT 2008, 14th International Con-
ference on the Theory and Application of Cryptology and Informa-
tion Security, Melbourne, Australia, December 7-11, 2008. Proceedings,
volume 5350 of Lecture Notes in Computer Science, pages 326–343.
Springer, 2008. https://doi.org/10.1007/978-3-540-89255-7_20.

[104] Aaron Hutchinson, Jason T. LeGrow, Brian Koziel, and Reza Azarder-
akhsh. Further optimizations of CSIDH: A systematic approach to
efficient strategies, permutations, and bound vectors. In Mauro Conti,
Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi, editors,
Applied Cryptography and Network Security - 18th International Con-
ference, ACNS 2020, Rome, Italy, October 19-22, 2020, Proceedings,
Part I, volume 12146 of Lecture Notes in Computer Science, pages 481–
501. Springer, 2020. https://doi.org/10.1007/978-3-030-57808-

4_24.

[105] Tetsuya Izu and Tsuyoshi Takagi. Exceptional procedure attack on
elliptic curve cryptosystems. In Yvo Desmedt, editor, Public Key
Cryptography - PKC 2003, 6th International Workshop on Theory and
Practice in Public Key Cryptography, Miami, FL, USA, January 6-8,
2003, Proceedings, volume 2567 of Lecture Notes in Computer Sci-
ence, pages 224–239. Springer, 2003. https://doi.org/10.1007/3-

540-36288-6_17.

[106] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt,
Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar.
”They’re not that hard to mitigate”: What cryptographic library de-
velopers think about timing attacks. In 43rd IEEE Symposium on
Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-
26, 2022, pages 632–649. IEEE, 2022. https://doi.org/10.1109/

SP46214.2022.9833713.

[107] Ján Jančár. The state of tooling for verifying constant-timeness
of cryptographic implementations, 2021. https://neuromancer.sk/

article/26.

[108] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello,
Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev,
David Urbanik, Geovandro Pereira, Koray Karabina, and Aaron
Hutchinson. SIKE: Algorithm specification and supporting documen-
tation. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project [152], 2022. https://sike.org/.

[109] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Bo-Yin Yang, editor,

https://doi.org/10.1007/978-3-540-89255-7_20
https://doi.org/10.1007/978-3-030-57808-4_24
https://doi.org/10.1007/978-3-030-57808-4_24
https://doi.org/10.1007/3-540-36288-6_17
https://doi.org/10.1007/3-540-36288-6_17
https://doi.org/10.1109/SP46214.2022.9833713
https://doi.org/10.1109/SP46214.2022.9833713
https://neuromancer.sk/article/26
https://neuromancer.sk/article/26
https://sike.org/

Bibliography 221

Post-Quantum Cryptography - 4th International Workshop, PQCrypto
2011, Taipei, Taiwan, November 29 - December 2, 2011. Proceed-
ings, volume 7071 of Lecture Notes in Computer Science, pages 19–34.
Springer, 2011. https://doi.org/10.1007/978-3-642-25405-5_2.

[110] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. Ex-
pander graphs based on GRH with an application to elliptic curve
cryptography. Journal of Number Theory, 129(6):1491–1504, 2009.
https://doi.org/10.1016/j.jnt.2008.11.006.

[111] Samuel Jaques and John M. Schanck. Quantum cryptanalysis in the
RAM model: Claw-finding attacks on SIKE. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO
2019 - 39th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume 11692
of Lecture Notes in Computer Science, pages 32–61. Springer, 2019.
https://doi.org/10.1007/978-3-030-26948-7_2.

[112] Marc Joye and Sung-Ming Yen. The Montgomery Powering Ladder.
In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15,
2002, Revised Papers, volume 2523 of Lecture Notes in Computer Sci-
ence, pages 291–302. Springer, 2002. https://doi.org/10.1007/3-

540-36400-5_22.

[113] David Kahn. The Codebreakers: The comprehensive history of secret
communication from ancient times to the internet. Simon and Schus-
ter, 1996.

[114] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM
Cortex-M4. https://github.com/mupq/pqm4.

[115] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Compu-
tation, 48:203–209, 1987. https://doi.org/10.1090/S0025-5718-

1987-0866109-5.

[116] Neal Koblitz and Alfred Menezes. Critical perspectives on provable
security: Fifteen years of ”another look” papers. Adv. Math. Commun.,
13(4):517–558, 2019. https://doi.org/10.3934/amc.2019034.

[117] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In 2019 IEEE Symposium on Security
and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019,
pages 1–19. IEEE, 2019. https://doi.org/10.1109/SP.2019.00002.

https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1016/j.jnt.2008.11.006
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/3-540-36400-5_22
https://github.com/mupq/pqm4
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.3934/amc.2019034
https://doi.org/10.1109/SP.2019.00002

222 Bibliography

[118] Paul C. Kocher. Timing attacks on implementations of Diffie–Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, Advances
in Cryptology - CRYPTO ’96, 16th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 of Lecture Notes in Computer Science, pages
104–113. Springer, 1996. https://doi.org/10.1007/3-540-68697-

5_9.

[119] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Michael J. Wiener, editor, Advances in Cryptology
- CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999. https://doi.org/10.1007/3-540-48405-1_25.

[120] Brian Koziel, Reza Azarderakhsh, and David Jao. Side-Channel At-
tacks on Quantum-Resistant Supersingular Isogeny Diffie–Hellman. In
Carlisle Adams and Jan Camenisch, editors, Selected Areas in Cryp-
tography - SAC 2017 - 24th International Conference, Ottawa, ON,
Canada, August 16-18, 2017, Revised Selected Papers, volume 10719
of Lecture Notes in Computer Science, pages 64–81. Springer, 2017.
https://doi.org/10.1007/978-3-319-72565-9_4.

[121] Adam Langley. ctgrind—checking that functions are constant time
with Valgrind, 2010. https://github.com/agl/ctgrind.

[122] Jason LeGrow, David Jao, and Reza Azarderakhsh. Modeling
Quantum-Safe Authenticated Key Establishment, and an Isogeny-
Based Protocol. Cryptology ePrint Archive, Report 2018/282, 2018.
https://eprint.iacr.org/2018/282.

[123] Jason T. LeGrow and Aaron Hutchinson. An Analysis of Fault Attacks
on CSIDH. IACR Cryptol. ePrint Arch., page 1006, 2020. https:

//eprint.iacr.org/2020/1006.

[124] Jason T. LeGrow and Aaron Hutchinson. (Short paper) Analysis of
a strong fault attack on static/ephemeral CSIDH. In Toru Nakan-
ishi and Ryo Nojima, editors, Advances in Information and Computer
Security - 16th International Workshop on Security, IWSEC 2021,
Virtual Event, September 8-10, 2021, Proceedings, volume 12835 of
Lecture Notes in Computer Science, pages 216–226. Springer, 2021.
https://doi.org/10.1007/978-3-030-85987-9_12.

[125] Kerstin Lemke-Rust. Models and algorithms for physical cryptanalysis.
PhD thesis, Ruhr University Bochum, 2007.

[126] John Lennon. Imagine [Song]. In Imagine. Universal Music, 1971.

https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-319-72565-9_4
https://github.com/agl/ctgrind
https://eprint.iacr.org/2018/282
https://eprint.iacr.org/2020/1006
https://eprint.iacr.org/2020/1006
https://doi.org/10.1007/978-3-030-85987-9_12

Bibliography 223

[127] Yang Li, Yu-ichi Hayashi, Arisa Matsubara, Naofumi Homma, Taka-
fumi Aoki, Kazuo Ohta, and Kazuo Sakiyama. Yet another fault-
based leakage in non-uniform faulty ciphertexts. In Jean-Luc Dan-
ger, Mourad Debbabi, Jean-Yves Marion, Joaqúın Garćıa-Alfaro, and
A. Nur Zincir-Heywood, editors, Foundations and Practice of Secu-
rity - 6th International Symposium, FPS 2013, La Rochelle, France,
October 21-22, 2013, Revised Selected Papers, volume 8352 of Lecture
Notes in Computer Science, pages 272–287. Springer, 2013. https:

//doi.org/10.1007/978-3-319-05302-8_17.

[128] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading
kernel memory from user space. In William Enck and Adrienne Porter
Felt, editors, 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018, pages 973–990.
USENIX Association, 2018. https://www.usenix.org/conference/

usenixsecurity18/presentation/lipp.

[129] Patrick Longa. A Note on Post-Quantum Authenticated Key Ex-
change from Supersingular Isogenies. Cryptology ePrint Archive, Re-
port 2018/267, 2018. https://eprint.iacr.org/2018/267.

[130] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. A
survey of microarchitectural side-channel vulnerabilities, attacks, and
defenses in cryptography. ACM Comput. Surv., 54(6):122:1–122:37,
2021. https://doi.org/10.1145/3456629.

[131] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-
DILITHIUM: Algorithm specification and supporting documentation.
Submission to the NIST Post-Quantum Cryptography Standardization
Project [152], 2017. https://pq-crystals.org/dilithium.

[132] Luciano Maino and Chloe Martindale. An attack on SIDH with ar-
bitrary starting curve. IACR Cryptol. ePrint Arch., page 1026, 2022.
https://eprint.iacr.org/2022/1026.

[133] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks: Revealing the secrets of smart cards, volume 31. Springer
Science & Business Media, 2008.

[134] Leandro Maŕın. Differential elliptic point addition in twisted edwards
curves. In Leonard Barolli, Fatos Xhafa, Makoto Takizawa, Tomoya
Enokido, and Hui-Huang Hsu, editors, 27th International Conference
on Advanced Information Networking and Applications Workshops,
WAINA 2013, Barcelona, Spain, March 25-28, 2013, pages 1337–1342.

https://doi.org/10.1007/978-3-319-05302-8_17
https://doi.org/10.1007/978-3-319-05302-8_17
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://eprint.iacr.org/2018/267
https://doi.org/10.1145/3456629
https://pq-crystals.org/dilithium
https://eprint.iacr.org/2022/1026

224 Bibliography

IEEE Computer Society, 2013. https://doi.org/10.1109/WAINA.

2013.152.

[135] Michael Meyer. Practical isogeny-based cryptography. PhD thesis,
Julius Maximilians University Würzburg, Germany, 2021. https:

//doi.org/10.25972/OPUS-24682.

[136] Michael Meyer, Fabio Campos, and Steffen Reith. On Lions and El-
ligators: An efficient constant-time implementation of CSIDH. In
Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptog-
raphy - 10th International Conference, PQCrypto 2019, Chongqing,
China, May 8-10, 2019 Revised Selected Papers, volume 11505 of
Lecture Notes in Computer Science, pages 307–325. Springer, 2019.
https://doi.org/10.1007/978-3-030-25510-7_17.

[137] Michael Meyer and Steffen Reith. A faster way to the CSIDH. In
Debrup Chakraborty and Tetsu Iwata, editors, Progress in Cryptology
- INDOCRYPT 2018 - 19th International Conference on Cryptology
in India, New Delhi, India, December 9-12, 2018, Proceedings, volume
11356 of Lecture Notes in Computer Science, pages 137–152. Springer,
2018. https://doi.org/10.1007/978-3-030-05378-9_8.

[138] Michael Meyer, Steffen Reith, and Fabio Campos. On hybrid SIDH
schemes using Edwards and Montgomery curve arithmetic. Cryptology
ePrint Archive, Paper 2017/1213, 2017. https://eprint.iacr.org/

2017/1213.

[139] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C.
Williams, editor, Advances in Cryptology - CRYPTO ’85, Santa Bar-
bara, California, USA, August 18-22, 1985, Proceedings, volume 218
of Lecture Notes in Computer Science, pages 417–426. Springer, 1985.
https://doi.org/10.1007/3-540-39799-X_31.

[140] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods
of factorization. Mathematics of Computation, 48(177):243–264, 1987.
https://doi.org/10.1090/S0025-5718-1987-0866113-7.

[141] Dustin Moody and Daniel Shumow. Analogues of Vélu’s formulas
for isogenies on alternate models of elliptic curves. Math. Comput.,
85(300):1929–1951, 2016. https://doi.org/10.1090/mcom/3036.

[142] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-
enhanced power analysis collision attack. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Em-
bedded Systems, CHES 2010, 12th International Workshop, Santa Bar-
bara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of
Lecture Notes in Computer Science, pages 125–139. Springer, 2010.
https://doi.org/10.1007/978-3-642-15031-9_9.

https://doi.org/10.1109/WAINA.2013.152
https://doi.org/10.1109/WAINA.2013.152
https://doi.org/10.25972/OPUS-24682
https://doi.org/10.25972/OPUS-24682
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-05378-9_8
https://eprint.iacr.org/2017/1213
https://eprint.iacr.org/2017/1213
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.1090/mcom/3036
https://doi.org/10.1007/978-3-642-15031-9_9

Bibliography 225

[143] Tomoki Moriya. Masked-degree SIDH. IACR Cryptol. ePrint Arch.,
page 1019, 2022. https://eprint.iacr.org/2022/1019.

[144] Michele Mosca. Cybersecurity in an era with quantum computers:
Will we be ready? IEEE Secur. Priv., 16(5):38–41, 2018. https:

//doi.org/10.1109/MSP.2018.3761723.

[145] Michael Naehrig and Joost Renes. Dual isogenies and their appli-
cation to public-key compression for isogeny-based cryptography. In
Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptol-
ogy - ASIACRYPT 2019 - 25th International Conference on the The-
ory and Application of Cryptology and Information Security, Kobe,
Japan, December 8-12, 2019, Proceedings, Part II, volume 11922 of
Lecture Notes in Computer Science, pages 243–272. Springer, 2019.
https://doi.org/10.1007/978-3-030-34621-8_9.

[146] Kohei Nakagawa, Hiroshi Onuki, Atsushi Takayasu, and Tsuyoshi Tak-
agi. L1-norm ball for CSIDH: Optimal strategy for choosing the secret
key space, 2020. https://eprint.iacr.org/2020/181.

[147] Erick Nascimento and Lukasz Chmielewski. Applying horizontal clus-
tering side-channel attacks on embedded ECC implementations. In
Thomas Eisenbarth and Yannick Teglia, editors, Smart Card Re-
search and Advanced Applications - 16th International Conference,
CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised
Selected Papers, volume 10728 of Lecture Notes in Computer Science,
pages 213–231. Springer, 2017. https://doi.org/10.1007/978-3-

319-75208-2_13.

[148] National Institute of Standards and Technology. FIPS186-4: Digital
Signature Standard (DSS), 2013. https://doi.org/10.6028/NIST.

FIPS.186-4.

[149] National Institute of Standards and Technology. NIST SP 800-56A
Rev. 3: Recommendation for Pair-Wise Key-Establishment Schemes
Using Discrete Logarithm Cryptography, 2018. https://doi.org/

10.6028/NIST.SP.800-56Ar3.

[150] National Institute of Standards and Technology. NIST SP 800-56B
Rev. 2: Recommendation for Pair-Wise Key-Establishment Using In-
teger Factorization Cryptography, 2019. https://doi.org/10.6028/
NIST.SP.800-56Br2.

[151] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Jeanne Ferrante and
Kathryn S. McKinley, editors, Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation,

https://eprint.iacr.org/2022/1019
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1109/MSP.2018.3761723
https://doi.org/10.1007/978-3-030-34621-8_9
https://eprint.iacr.org/2020/181
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Br2
https://doi.org/10.6028/NIST.SP.800-56Br2

226 Bibliography

San Diego, California, USA, June 10-13, 2007, pages 89–100. ACM,
2007. https://doi.org/10.1145/1250734.1250746.

[152] NIST Computer Security Division. Post-Quantum Cryptography
Standardization, 2016. https://csrc.nist.gov/Projects/Post-

Quantum-Cryptography.

[153] David Noack, Steffen Sanwald, Marc Stöttinger, Martin Böhner,
Norman Lahr, Thorsten Knoll, Steffen Reith, Evangelos Karatsio-
lis, Georg Land, Juliane Krämer, and Marcel Müller. Industrial use
cases and requirements for the deployment of post-quantum cryptog-
raphy, 2020. https://www.quantumrisc.de/results/quantumrisc-
wp1-report.pdf.

[154] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi
Takagi. (Short paper) A faster constant-time algorithm of CSIDH
keeping two points. In Nuttapong Attrapadung and Takeshi Yagi, ed-
itors, Advances in Information and Computer Security - 14th Interna-
tional Workshop on Security, IWSEC 2019, Tokyo, Japan, August 28-
30, 2019, Proceedings, volume 11689 of Lecture Notes in Computer Sci-
ence, pages 23–33. Springer, 2019. https://doi.org/10.1007/978-

3-030-26834-3_2.

[155] Rémy Oudompheng and Giacomo Pope. A note on reimplementing
the Castryck-Decru attack and lessons learned for SageMath. IACR
Cryptol. ePrint Arch., page 1283, 2022. https://eprint.iacr.org/

2022/1283.

[156] Lorenz Panny. Cryptography on Isogeny Graphs. PhD the-
sis, TU Eindhoven, Mathematics and Computer Science, February
2021. https://research.tue.nl/en/publications/cryptography-
on-isogeny-graphs.

[157] Torben P. Pedersen. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Joan Feigenbaum, editor, Advances
in Cryptology - CRYPTO ’91, 11th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings, volume 576 of Lecture Notes in Computer Science, pages
129–140. Springer, 1991. https://doi.org/10.1007/3-540-46766-

1_9.

[158] Chris Peikert. He Gives C-Sieves on the CSIDH. In Anne Canteaut and
Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 -
39th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Pro-
ceedings, Part II, volume 12106 of Lecture Notes in Computer Science,

https://doi.org/10.1145/1250734.1250746
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://www.quantumrisc.de/results/quantumrisc-wp1-report.pdf
https://www.quantumrisc.de/results/quantumrisc-wp1-report.pdf
https://doi.org/10.1007/978-3-030-26834-3_2
https://doi.org/10.1007/978-3-030-26834-3_2
https://eprint.iacr.org/2022/1283
https://eprint.iacr.org/2022/1283
https://research.tue.nl/en/publications/cryptography-on-isogeny-graphs
https://research.tue.nl/en/publications/cryptography-on-isogeny-graphs
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9

Bibliography 227

pages 463–492. Springer, 2020. https://doi.org/10.1007/978-3-

030-45724-2_16.

[159] Arnold K Pizer. Ramanujan graphs and Hecke operators. Bulletin
of the American Mathematical Society, 23(1):127–137, 1990. https:

//doi.org/10.1090/S0273-0979-1990-15918-X.

[160] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. Falcon: Algorithm specifi-
cation and supporting documentation. Submission to the NIST Post-
Quantum Cryptography Standardization Project [152], 2017. https:

//falcon-sign.info/.

[161] Joost Renes. Computing isogenies between montgomery curves us-
ing the action of (0, 0). In Tanja Lange and Rainer Steinwandt,
editors, Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceed-
ings, volume 10786 of Lecture Notes in Computer Science, pages 229–
247. Springer, 2018. https://doi.org/10.1007/978-3-319-79063-

3_11.

[162] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems (reprint).
Commun. ACM, 26(1):96–99, 1983. https://doi.org/10.1145/

357980.358017.

[163] Damien Robert. Breaking SIDH in polynomial time. IACR Cryp-
tol. ePrint Arch., page 1038, 2022. https://eprint.iacr.org/2022/
1038.

[164] A. Rostovtsev and A. Stolbunov. Public-key cryptosystem based on
isogenies. Cryptology ePrint Archive, Report 2006/145, 2006. http:

//eprint.iacr.org/2006/145.

[165] Tobias Schneider and Amir Moradi. Leakage assessment methodol-
ogy - A clear roadmap for side-channel evaluations. In Tim Güneysu
and Helena Handschuh, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2015 - 17th International Workshop, Saint-
Malo, France, September 13-16, 2015, Proceedings, volume 9293 of
Lecture Notes in Computer Science, pages 495–513. Springer, 2015.
https://doi.org/10.1007/978-3-662-48324-4_25.

[166] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum
TLS without handshake signatures. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020 ACM

https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1090/S0273-0979-1990-15918-X
https://doi.org/10.1090/S0273-0979-1990-15918-X
https://falcon-sign.info/
https://falcon-sign.info/
https://doi.org/10.1007/978-3-319-79063-3_11
https://doi.org/10.1007/978-3-319-79063-3_11
https://doi.org/10.1145/357980.358017
https://doi.org/10.1145/357980.358017
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2022/1038
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-3-662-48324-4_25

228 Bibliography

SIGSAC Conference on Computer and Communications Security, Vir-
tual Event, USA, November 9-13, 2020, pages 1461–1480. ACM, 2020.
https://doi.org/10.1145/3372297.3423350.

[167] Hwajeong Seo, Mila Anastasova, Amir Jalali, and Reza Azarderakhsh.
Supersingular Isogeny Key Encapsulation (SIKE) Round 2 on ARM
Cortex-M4. IEEE Trans. Computers, 70(10):1705–1718, 2021. https:
//doi.org/10.1109/TC.2020.3023045.

[168] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979. http://doi.acm.org/10.1145/359168.359176.

[169] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Swarn Priya, Peter
Schwabe, and Lucas Tabary-Maujean. Typing high-speed cryptogra-
phy against spectre v1. IACR Cryptol. ePrint Arch., page 1270, 2022.
https://eprint.iacr.org/2022/1270.

[170] Peter W. Shor. Algorithms for quantum computation: Discrete log-
arithms and factoring. In 35th Annual Symposium on Foundations
of Computer Science, Santa Fe, New Mexico, USA, 20-22 Novem-
ber 1994, pages 124–134. IEEE Computer Society, 1994. https:

//doi.org/10.1109/SFCS.1994.365700.

[171] Peter W. Shor. Algorithms for quantum computation: Discrete log-
arithms and factoring. In 35th Annual Symposium on Foundations
of Computer Science, Santa Fe, New Mexico, USA, 20-22 Novem-
ber 1994, pages 124–134. IEEE Computer Society, 1994. https:

//doi.org/10.1109/SFCS.1994.365700.

[172] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of
Graduate texts in mathematics. Springer, 1986.

[173] S. Singh. The Code Book: The Science of Secrecy from Ancient Egypt
to Quantum Cryptography. Anchor Books, 2000.

[174] Markus Stadler. Publicly verifiable secret sharing. In Ueli M. Mau-
rer, editor, Advances in Cryptology - EUROCRYPT ’96, International
Conference on the Theory and Application of Cryptographic Tech-
niques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070
of Lecture Notes in Computer Science, pages 190–199. Springer, 1996.
https://doi.org/10.1007/3-540-68339-9_17.

[175] Seiichiro Tani. Claw finding algorithms using quantum walk. Theor.
Comput. Sci., 410(50):5285–5297, 2009. https://doi.org/10.1016/

j.tcs.2009.08.030.

https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1109/TC.2020.3023045
https://doi.org/10.1109/TC.2020.3023045
http://doi.acm.org/10.1145/359168.359176
https://eprint.iacr.org/2022/1270
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/3-540-68339-9_17
https://doi.org/10.1016/j.tcs.2009.08.030
https://doi.org/10.1016/j.tcs.2009.08.030

Bibliography 229

[176] Tamir Tassa. Hierarchical threshold secret sharing. In Moni Naor,
editor, Theory of Cryptography, First Theory of Cryptography Confer-
ence, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Pro-
ceedings, volume 2951 of Lecture Notes in Computer Science, pages
473–490. Springer, 2004. https://doi.org/10.1007/978-3-540-

24638-1_26.

[177] Élise Tasso, Luca De Feo, Nadia El Mrabet, and Simon Pontié. Re-
sistance of Isogeny-Based Cryptographic Implementations to a Fault
Attack. In Shivam Bhasin and Fabrizio De Santis, editors, Construc-
tive Side-Channel Analysis and Secure Design - 12th International
Workshop, COSADE 2021, Lugano, Switzerland, October 25-27, 2021,
Proceedings, volume 12910 of Lecture Notes in Computer Science,
pages 255–276. Springer, 2021. https://doi.org/10.1007/978-3-

030-89915-8_12.

[178] The National Institute of Standards and Technology (NIST). Submis-
sion requirements and evaluation criteria for the post-quantum cryp-
tography standardization process, 2016. https://csrc.nist.gov/

Projects/Post-Quantum-Cryptography.

[179] Rune Thorbek. Proactive linear integer secret sharing. IACR Cryptol.
ePrint Arch., page 183, 2009. http://eprint.iacr.org/2009/183.

[180] Yan Bo Ti. Fault attack on supersingular isogeny cryptosystems. In
Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum Cryptog-
raphy - 8th International Workshop, PQCrypto 2017, Utrecht, The
Netherlands, June 26-28, 2017, Proceedings, volume 10346 of Lecture
Notes in Computer Science, pages 107–122. Springer, 2017. https:

//doi.org/10.1007/978-3-319-59879-6_7.

[181] Giulia Traverso, Denise Demirel, and Johannes Buchmann. Performing
computations on hierarchically shared secrets. In Antoine Joux, Abder-
rahmane Nitaj, and Tajjeeddine Rachidi, editors, Progress in Cryptol-
ogy - AFRICACRYPT 2018 - 10th International Conference on Cryp-
tology in Africa, Marrakesh, Morocco, May 7-9, 2018, Proceedings,
volume 10831 of Lecture Notes in Computer Science, pages 141–161.
Springer, 2018. https://doi.org/10.1007/978-3-319-89339-6_9.

[182] David Urbanik and David Jao. SoK: The problem landscape of SIDH.
In Keita Emura, Jae Hong Seo, and Yohei Watanabe, editors, Proceed-
ings of the 5th ACM on ASIA Public-Key Cryptography Workshop,
APKC@AsiaCCS, Incheon, Republic of Korea, June 4, 2018, pages
53–60. ACM, 2018. https://doi.org/10.1145/3197507.3197516.

[183] J. van Woudenberg and C. O’Flynn. The Hardware Hacking Handbook:
Breaking Embedded Security with Hardware Attacks. No Starch Press,
2021.

https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1007/978-3-030-89915-8_12
https://doi.org/10.1007/978-3-030-89915-8_12
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
http://eprint.iacr.org/2009/183
https://doi.org/10.1007/978-3-319-59879-6_7
https://doi.org/10.1007/978-3-319-59879-6_7
https://doi.org/10.1007/978-3-319-89339-6_9
https://doi.org/10.1145/3197507.3197516

230 Bibliography

[184] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de
l’Académie des Sciences de Paris, 273:238–241, 1971.

[185] Weijia Wang, Yu Yu, François-Xavier Standaert, Junrong Liu, Zheng
Guo, and Dawu Gu. Ridge-based DPA: improvement of differential
power analysis for nanoscale chips. IEEE Trans. Inf. Forensics Se-
cur., 13(5):1301–1316, 2018. https://doi.org/10.1109/TIFS.2017.
2787985.

[186] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Ho-
vav Shacham, Christopher W Fletcher, and David Kohlbrenner.
Hertzbleed: Turning power side-channel attacks into remote timing
attacks on x86. In Proceedings of the USENIX Security Symposium
(USENIX), 2022. https://www.hertzbleed.com/.

[187] Lawrence C Washington. Elliptic curves: number theory and cryptog-
raphy. Chapman and Hall/CRC, 2008.

[188] Sung-Ming Yen and Marc Joye. Checking before output may not be
enough against fault-based cryptanalysis. IEEE Trans. Computers,
49(9):967–970, 2000. https://doi.org/10.1109/12.869328.

[189] Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-Jae Moon.
A Countermeasure against One Physical Cryptanalysis May Benefit
Another Attack. In Kwangjo Kim, editor, Information Security and
Cryptology - ICISC 2001, 4th International Conference Seoul, Korea,
December 6-7, 2001, Proceedings, volume 2288 of Lecture Notes in
Computer Science, pages 414–427. Springer, 2001. https://doi.org/
10.1007/3-540-45861-1_31.

[190] Sung-Ming Yen, Seungjoo Kim, Seongan Lim, and Sang-Jae Moon.
RSA Speedup with Chinese Remainder Theorem Immune against
Hardware Fault Cryptanalysis. IEEE Trans. Computers, 52(4):461–
472, 2003. https://doi.org/10.1109/TC.2003.1190587.

[191] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and
Vladimir Soukharev. A post-quantum digital signature scheme based
on supersingular isogenies. In Aggelos Kiayias, editor, Financial Cryp-
tography and Data Security - 21st International Conference, FC 2017,
Sliema, Malta, April 3-7, 2017, Revised Selected Papers, volume 10322
of Lecture Notes in Computer Science, pages 163–181. Springer, 2017.
https://doi.org/10.1007/978-3-319-70972-7_9.

[192] Bilgiday Yuce, Nahid Farhady Ghalaty, Chinmay Deshpande, Conor
Patrick, Leyla Nazhandali, and Patrick Schaumont. FAME: Fault-
attack Aware Microprocessor Extensions for Hardware Fault Detection

https://doi.org/10.1109/TIFS.2017.2787985
https://doi.org/10.1109/TIFS.2017.2787985
https://www.hertzbleed.com/
https://doi.org/10.1109/12.869328
https://doi.org/10.1007/3-540-45861-1_31
https://doi.org/10.1007/3-540-45861-1_31
https://doi.org/10.1109/TC.2003.1190587
https://doi.org/10.1007/978-3-319-70972-7_9

and Software Fault Response. In Proceedings of the Hardware and Ar-
chitectural Support for Security and Privacy 2016, HASP@ICSA 2016,
Seoul, Republic of Korea, June 18, 2016, pages 8:1–8:8. ACM, 2016.
https://doi.org/10.1145/2948618.2948626.

[193] Fan Zhang, Bolin Yang, Xiaofei Dong, Sylvain Guilley, Zhe Liu, Wei
He, Fangguo Zhang, and Kui Ren. Side-Channel Analysis and Coun-
termeasure Design on ARM-Based Quantum-Resistant SIKE. IEEE
Trans. Computers, 69(11):1681–1693, 2020. https://doi.org/10.

1109/TC.2020.3020407.

231

https://doi.org/10.1145/2948618.2948626
https://doi.org/10.1109/TC.2020.3020407
https://doi.org/10.1109/TC.2020.3020407

232

Research Data Management

This thesis research has been carried out under the research data manage-
ment policy of the Institute for Computing and Information Science of Rad-
boud University, The Netherlands.39

The following research datasets have been produced during this PhD
research:

• Chapter 3.1: On hybrid SIDH schemes
https://github.com/sopmacF/hybrid-SIDH

• Chapter 4.1: Efficient constant-time implementation of CSIDH
https://github.com/sopmacF/On-Lions-and-Elligators

• Chapter 4.2: CTIDH: faster constant-time CSIDH
https://github.com/sopmacF/CTIDH

• Chapter 5.1: Protecting CSIDH with Dummy-Operations
https://github.com/csidhfi/csidhfi

• Chapter 5.2: Safe-Error Attacks on SIKE and CSIDH
https://github.com/Safe-Error-Attacks-on-SIKE-and-

CSIDH/SEAoSaC

• Chapter 5.3: Zero-Value and Correlation Attacks on SIKE and CSIDH
https://github.com/PaZeZeVaAt/simulation

Further, all datasets produced during this thesis packaged into a single
archive are available at https://doi.org/10.5281/zenodo.6900027.

39ru.nl/icis/research-data-management/, last accessed July 20th, 2022.

233

https://github.com/sopmacF/hybrid-SIDH
https://github.com/sopmacF/On-Lions-and-Elligators
https://github.com/sopmacF/CTIDH
https://github.com/csidhfi/csidhfi
https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
https://github.com/Safe-Error-Attacks-on-SIKE-and-CSIDH/SEAoSaC
https://github.com/PaZeZeVaAt/simulation
https://doi.org/10.5281/zenodo.6900027
https://www.ru.nl/icis/research-data-management/

234

Summary

The security of public-key protocols widely deployed today relies on the
hardness of the integer factorization problem and the discrete logarithm
problem. Due to Shor’s algorithm these problems can be efficiently solved
by a sufficiently large-scale quantum computer. Thus, quantum computers
pose a serious threat to today’s digital security.

Among other approaches for building quantum-safe algorithms, isogeny-
based cryptography is a relatively new approach based on the hardness of
finding homomorphisms between elliptic curves.

The focus of this thesis lies on optimizations, secure implementations,
and applications of isogeny-based cryptography.

On the constructive side, we first present and evaluate a hybrid SIDH
scheme based on Montgomery and twisted Edwards curves. Further, we
introduce two approaches for evaluating CSIDH in constant-time. In partic-
ular, we present the first complete constant-time implementation of CSIDH
and CTIDH, a new key space and a corresponding new algorithm achieving
speed records.

On the destructive side, we focus on physical attacks on isogeny-based
schemes to understand the security of these schemes against powerful adver-
saries. Thereby, we present several attacks and possible countermeasures on
different isogeny-based schemes and their variants.

Finally, we present an actively secure threshold scheme in the setting of
hard homogenous spaces.

235

236

Samenvatting

De veiligheid van publieke-sleutelcryptografie, wat tegenwoordig op grote
schaal gebruikt wordt, berust op de complexiteit van het factorisatieprob-
leem en het discrete-logaritmeprobleem. Dankzij Shor’s algoritme kunnen
deze problemen efficiënt worden opgelost door een kwantumcomputer die
groot genoeg is. Kwantumcomputers vormen daarmee een ernstige bedreig-
ing voor de huidige digitale veiligheid. Er bestaan verschillende benaderin-
gen voor het bouwen van kwantumveilige algoritmen. Een relatief nieuwe
benadering is isogenie-gebaseerde cryptografie, gebaseerd op de complex-
iteit van het vinden van homomorfismen tussen elliptische krommen. De
focus van dit proefschrift ligt op optimalisaties, veilige implementaties en
toepassingen van isogenie-gebaseerde cryptografie. Aan de constructieve
kant presenteren en evalueren we eerst een hybride SIDH-schema gebaseerd
op Montgomery en twisted Edwards-krommen. Verder introduceren we twee
benaderingen voor het evalueren van CSIDH in constante tijd. In het bi-
jzonder presenteren we de eerste volledige constantetijdimplementatie van
CSIDH en CTIDH, een nieuwe key space en een bijbehorend nieuw algo-
ritme waarmee snelheidsrecords worden gehaald. Aan de destructieve kant
richten we ons op fysieke aanvallen op schema’s gebaseerd op isogenieën
om de veiligheid van deze schema’s tegen krachtige aanvallers te begrijpen.
Daarbij presenteren we verschillende aanvallen op schema’s die op isoge-
nieën zijn gebaseerd en hun varianten, en maatregelen om deze aanvallen te
voorkomen. Tenslotte presenteren we een threshold schema dat actief veilig
is, in de setting van hard homogenous spaces.

237

238

About the Author

Fabio was born in (the wonderful city of) Rio de Janeiro, Brazil, on February
16, 1975. After finishing the Segundo Grau at Colégio Pinheiro Guimarães,
Rio de Janeiro, Brazil, he moved to Germany. In 1997, he started studying
applied computer science at Fachhochschule Wiesbaden, Germany. He com-
pleted his Diploma in 2002. After finishing his diploma studies, he changed
to the industry, where he was responsible for the IT and process manage-
ment departments of two companies for over 15 years. In 2006, he started
a master’s degree at the RheinMain University of Applied Sciences, Wies-
baden, Germany. His master studies ended in 2010 with a M.Sc. thesis on
distributed computing in the fields of number theory supervised by Steffen
Reith and Jörn Steuding. In 2018, he started his Ph.D. studies on post-
quantum cryptography at the RheinMain University of Applied Sciences un-
der the supervision of Steffen Reith. From 2019, he was an external Ph.D.
student at the Radboud University, Nijmegen, The Netherlands, under the
supervision of Peter Schwabe and Steffen Reith. In 2021, Fabio was re-
searcher at the Max-Planck-Institute for Security and Privacy in Bochum,
Germany. This thesis presents results of works from 2017 to 2022.

List of Publications

Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domı́nguez,
Michael Meyer, Krijn Reijnders, Francisco Rodŕıguez-Henŕıquez,
Peter Schwabe, and Thom Wiggers. On the practicality of post-
quantum TLS using large-parameter CSIDH. Cryptology ePrint
Archive, Paper 2023/793, 2023. https://eprint.iacr.org/

2023/793 (under submission)

Thomas Aulbach, Fabio Campos, Juliane Krämer, Simona
Samardjiska, and Marc Stöttinger. Separating oil and vinegar
with a single trace. Cryptology ePrint Archive, Paper 2023/335,
2023. https://eprint.iacr.org/2023/335 (to be published at
TCHES 2023)

239

https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2023/335

Fabio Campos, Michael Meyer, Krijn Reijnders, and Marc
Stöttinger. Patient zero and patient six: Zero-value and cor-
relation attacks on CSIDH and SIKE. In Benjamin Smith and
Huapeng Wu, editors, Selected Areas in Cryptography - SAC 2022
- 29th International Conference, Ontario, Canada, August 24-26,
2022, Revised Selected Papers, Lecture Notes in Computer Sci-
ence. Springer, 2022. https://eprint.iacr.org/2022/904 (to
be published at SAC 2022)

Fabio Campos and Philipp Muth. On actively secure fine-
grained access structures from isogeny assumptions. In Jung Hee
Cheon and Thomas Johansson, editors, Post-Quantum Cryptog-
raphy - 13th International Workshop, PQCrypto 2022, Virtual
Event, September 28-30, 2022, Proceedings, volume 13512 of Lec-
ture Notes in Computer Science, pages 375–398. Springer, 2022.
https://eprint.iacr.org/2021/1109

Fabio Campos, Juliane Krämer, and Marcel Müller. Safe-error
attacks on SIKE and CSIDH. In Lejla Batina, Stjepan Picek, and
Mainack Mondal, editors, Security, Privacy, and Applied Cryp-
tography Engineering - 11th International Conference, SPACE
2021, Kolkata, India, December 10-13, 2021, Proceedings, vol-
ume 13162 of Lecture Notes in Computer Science, pages 104–125.
Springer, 2021. https://doi.org/10.1007/978-3-030-95085-
9_6

Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung
Chou, Tanja Lange, Michael Meyer, Benjamin Smith, and Jana
Sotáková. CTIDH: faster constant-time CSIDH. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(4):351–387, 2021. https:

//doi.org/10.46586/tches.v2021.i4.351-387

Fabio Campos, Lars Jellema, Mauk Lemmen, Lars Müller, Am-
ber Sprenkels, and Benôıt Viguier. Assembly or optimized C
for lightweight cryptography on RISC-V? In Stephan Krenn,
Haya Shulman, and Serge Vaudenay, editors, Cryptology and Net-
work Security - 19th International Conference, CANS 2020, Vi-
enna, Austria, December 14-16, 2020, Proceedings, volume 12579
of Lecture Notes in Computer Science, pages 526–545. Springer,
2020. https://doi.org/10.1007/978-3-030-65411-5_26

Fabio Campos, Matthias J. Kannwischer, Michael Meyer, Hi-
roshi Onuki, and Marc Stöttinger. Trouble at the CSIDH: Pro-
tecting CSIDH with Dummy-Operations Against Fault Injec-
tion Attacks. In 17th Workshop on Fault Detection and Tol-
erance in Cryptography, FDTC 2020, Milan, Italy, September

240

https://eprint.iacr.org/2022/904
https://eprint.iacr.org/2021/1109
https://doi.org/10.1007/978-3-030-95085-9_6
https://doi.org/10.1007/978-3-030-95085-9_6
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1007/978-3-030-65411-5_26

13, 2020, pages 57–65. IEEE, 2020. https://doi.org/10.1109/
FDTC51366.2020.00015

Fabio Campos, Tim Kohlstadt, Steffen Reith, and Marc
Stöttinger. LMS vs XMSS: comparison of stateful hash-based
signature schemes on ARM Cortex-M4. In Abderrahmane Ni-
taj and Amr M. Youssef, editors, Progress in Cryptology -
AFRICACRYPT 2020 - 12th International Conference on Cryp-
tology in Africa, Cairo, Egypt, July 20-22, 2020, Proceedings, vol-
ume 12174 of Lecture Notes in Computer Science, pages 258–277.
Springer, 2020. https://doi.org/10.1007/978-3-030-51938-
4_13

Michael Meyer, Fabio Campos, and Steffen Reith. On Lions and
Elligators: An efficient constant-time implementation of CSIDH.
In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum
Cryptography - 10th International Conference, PQCrypto 2019,
Chongqing, China, May 8-10, 2019 Revised Selected Papers, vol-
ume 11505 of Lecture Notes in Computer Science, pages 307–325.
Springer, 2019. https://doi.org/10.1007/978-3-030-25510-
7_17

Fabio Campos, Michael Meyer, Steffen Sanwald, Marc Stöttinger,
and Yi Wang. Post-quantum cryptography for ECU secu-
rity use cases. In 17th escar Europe : embedded security in
cars (Konferenzveröffentlichung). 2019. https://doi.org/10.

13154/294-6673

Michael Meyer, Steffen Reith, and Fabio Campos. On hybrid
SIDH schemes using Edwards and Montgomery curve arithmetic.
Cryptology ePrint Archive, Paper 2017/1213, 2017. https://

eprint.iacr.org/2017/1213

241

https://doi.org/10.1109/FDTC51366.2020.00015
https://doi.org/10.1109/FDTC51366.2020.00015
https://doi.org/10.1007/978-3-030-51938-4_13
https://doi.org/10.1007/978-3-030-51938-4_13
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.1007/978-3-030-25510-7_17
https://doi.org/10.13154/294-6673
https://doi.org/10.13154/294-6673
https://eprint.iacr.org/2017/1213
https://eprint.iacr.org/2017/1213

	Contents
	Introduction
	Outline and Contributions
	Data Management

	Preliminaries
	Elliptic Curves
	Isogenies
	Cryptographic Constructions
	Key-Establishment Schemes
	Digital Signature Schemes
	Threshold Schemes

	Cryptographic Protocols
	Supersingular Case over Fp2 (SIDH)
	Supersingular Case over Fp (CSIDH)

	Physical Attacks
	Side-Channel Attacks
	Fault Attacks

	Optimizations
	On hybrid SIDH schemes
	Introduction
	Preliminaries
	Montgomery curve arithmetic
	Twisted Edwards curve arithmetic
	Switching between Montgomery and twisted Edwards curves
	Elliptic-curve arithmetic in SIDH
	Twisted Edwards curve arithmetic in SIDH
	Implementation results
	Conclusion and future work

	Constant-time Implementation
	Efficient constant-time implementation of CSIDH
	Introduction
	CSIDH
	Leakage scenarios
	Mitigating Leakage
	Efficient Implementation
	Implementation Results
	Conclusion
	Appendix

	CTIDH: faster constant-time CSIDH
	Introduction
	Background
	Batching and key spaces
	Isogeny atomic blocks
	Evaluating atomic blocks in constant time
	Strategies and parameters for CTIDH
	Constant-time software for the action
	Software speeds
	Appendix

	Physical Attacks
	Protecting CSIDH with Dummy-Operations
	Introduction
	Preliminaries
	Attacker Models
	Simulation
	Practical Experiments
	Countermeasures
	Performance results

	Safe-Error Attacks on SIKE and CSIDH
	Introduction
	Background
	Attacks on SIKE
	Attacks on CSIDH
	Practical Experiments
	Countermeasures
	Conclusion

	Zero-Value and Correlation Attacks on CSIDH and SIKE
	Introduction
	Preliminaries
	Recovering CSIDH keys with E0 side-channel leakage
	Recovering SIKE keys with side-channel leakage of E6
	Feasibility of obtaining the side-channel information
	Simulating the attacks on SQALE, CTIDH and SIKE
	Countermeasures and conclusion
	Flipping 4C as a countermeasure.
	CSIDH implementations using radical isogenies

	Applications
	Fine-grained Access Structures from Isogeny Assumptions
	Introduction
	Preliminaries
	Key Exchange Mechanism
	Actively Secure Secret Shared Signature Protocols
	Generalising the Secret Sharing Schemes
	Conclusion
	Appendix

	Outlook
	Bibliography
	Research Data Management
	Summary
	Samenvatting
	About the Author

