CTIDH on Cortex-M4 with FPU - Goal: Implement \mathbb{F}_p arithemtic using floating point registers to reduce memory accesses - understand Montgomery reduction¹ - understand available x86 implementation² - port x86-assembly code generating scripts³ to Arm Cortex-M4 - improve current code using floating point registers on the M4 (or other tricks you can find) ¹https://cacr.uwaterloo.ca/hac/about/chap14.pdf ²e.g. http://ctidh.isogeny.org/high-ctidh-20210523/fp512.S.html ³http://ctidh.isogeny.org/high-ctidh-20210523/autogen.html ## Toom-Cook polynomial multiplication in velusqrt isogeny formulas - Goal: Implement velusqrt isogeny formulas using Toom-Cook instead of Karatsuba - understand velusqrt isogenies⁴ - understand available C implementation using Karatsuba⁵ - Replace Karatsuba by Toom-Cook - Compare performance for various isogeny degrees ⁴http://velusqrt.isogeny.org/velusqrt-20200616.pdf ⁵http://velusqrt.isogeny.org/software.html ## **Primes for B-SIDH** - Goal: Search for special B-SIDH primes - ullet understand smoothness requirement of p-1 and p+1 in B-SIDH 6 - check methods for finding B-SIDH primes⁷ - implement search for special B-SIDH primes, e.g., unbalanced primes such that one of p-1 and p+1 has a very small smoothness bound https://eprint.iacr.org/2020/1283.pdf ⁶https://eprint.iacr.org/2019/1145.pdf ⁷e.g. https://eprint.iacr.org/2019/1145.pdf or