CTIDH on Cortex-M4 with FPU

- Goal: Implement \mathbb{F}_p arithemtic using floating point registers to reduce memory accesses
 - understand Montgomery reduction¹
 - understand available x86 implementation²
 - port x86-assembly code generating scripts³ to Arm Cortex-M4
 - improve current code using floating point registers on the M4 (or other tricks you can find)

¹https://cacr.uwaterloo.ca/hac/about/chap14.pdf

²e.g. http://ctidh.isogeny.org/high-ctidh-20210523/fp512.S.html

³http://ctidh.isogeny.org/high-ctidh-20210523/autogen.html

Toom-Cook polynomial multiplication in velusqrt isogeny formulas

- Goal: Implement velusqrt isogeny formulas using Toom-Cook instead of Karatsuba
 - understand velusqrt isogenies⁴
 - understand available C implementation using Karatsuba⁵
 - Replace Karatsuba by Toom-Cook
 - Compare performance for various isogeny degrees

⁴http://velusqrt.isogeny.org/velusqrt-20200616.pdf

⁵http://velusqrt.isogeny.org/software.html

Primes for B-SIDH

- Goal: Search for special B-SIDH primes
 - ullet understand smoothness requirement of p-1 and p+1 in B-SIDH 6
 - check methods for finding B-SIDH primes⁷
 - implement search for special B-SIDH primes, e.g., unbalanced primes such that one of p-1 and p+1 has a very small smoothness bound

https://eprint.iacr.org/2020/1283.pdf

⁶https://eprint.iacr.org/2019/1145.pdf

⁷e.g. https://eprint.iacr.org/2019/1145.pdf or